
1
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Abstract—The identification of the exact positions of the first
and second heart sounds within a phonocardiogram (PCG), or
heart sound segmentation, is an essential step in the automatic
analysis of heart sound recordings, allowing for the classifica-
tion of pathological events. While threshold-based segmentation
methods have shown modest success, probabilistic models, such
as hidden Markov models, have recently been shown to surpass
the capabilities of previous methods. Segmentation performance
is further improved when a priori information about the expected
duration of the states is incorporated into the model, such as in
a hidden semi-Markov model (HSMM). This article addresses
the problem of the accurate segmentation of the first and second
heart sound within noisy, real-world PCG recordings using a
HSMM, extended with the use of logistic regression for emission
probability estimation. In addition, we implement a modified
Viterbi algorithm for decoding the most-likely sequence of states,
and evaluated this method on a large dataset of 10172 seconds
of PCG recorded from 112 patients (including 12181 first and
11627 second heart sounds). The proposed method achieved an
average F1 score of 95.63±0.85% while the current state-of-
the-art achieved 86.28±1.55% when evaluated on unseen test
recordings. The greater discrimination between states afforded
using logistic regression as opposed to the previous Gaussian
distribution-based emission probability estimation as well as
the use of an extended Viterbi algorithm allows this method
to significantly outperform the current state-of-the-art method
based on a two-sided, paired t-test.

Index Terms—Phonocardiography, Hidden Markov models,
Logistic regression, Heart sound segmentation

I. INTRODUCTION

THE segmentation of the fundamental heart sounds
(FHSs) is an essential step in the automatic analysis

of the phonocardiogram (PCG). The accurate localisation
of the FHSs is a prerequisite for the identification of the
systolic or diastolic regions of a PCG, allowing the subsequent
classification of pathological murmurs in these regions [1]. The
FHSs refer to the first heart sound, S1, and the second heart
sound, S2, originating at the beginning of mechanical systole
and diastole respectively [2]. S1 occurs immediately after the
R-peak (ventricular depolarisation) of the electrocardiogram
(ECG), while S2 occurs at approximately at the end-T-wave of
the ECG (the end of ventricular depolarisation) [3], as shown
in Figure 1.
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Figure 1. Example of an ECG-labelled PCG, with the ECG, PCG and four
states of the heart cycle (S1, systole, S2 and diastole) shown. The R-peak and
end-T-wave are labelled as references for defining the approximate positions of
S1 and S2 respectively. Mid-systolic clicks, typical of mitral valve prolapse,
can be seen.

While the segmentation of heart sounds is relatively simple
in noise-free recordings, it becomes a difficult task when the
recordings are corrupted by in-band noise. Common noise
sources include endogenous or ambient speech, motion arte-
facts and physiological sounds such as intestinal and breathing
sounds. Other physiological sounds of interest, such as mur-
murs, clicks, splitting of the FHSs and additional S3 and S4

sounds, can also complicate the identification of the FHSs.
This article addresses the problem of accurate segmentation

of the FHSs in noisy, real-world recordings from healthy and
pathological patients without the use of a reference signal such
as an ECG. The principal contributions of this work are: an
exploration of features for heart sound segmentation, including
a robust selection of the wavelet family and decomposition
level when using the discrete wavelet transform; an enhanced
hidden Markov model, which includes duration dependencies
and logistic regression-based emission probabilities; and the
implementation of an extension to the Viterbi algorithm for use
with hidden semi-Markov models (HSMMs). The proposed
segmentation approach is rigorously evaluated on one of the
largest published datasets, and compared to the current state-
of-the-art segmentation algorithm.

II. BACKGROUND

Table I summarises the relevant background literature. The
table presents the size of the datasets used, numerical results
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Table I
SUMMARY OF PREVIOUS WORK. Ac DENOTES ACCURACY, Se SENSITIVITY, Sp SPECIFICITY AND P+ POSITIVE PREDICTIVITY

Authors Dataset Reported Metrics and Results Notes
[4] 37 recordings (515 cycles) from children with murmurs (14

being pathological)
93.0% Ac Unsupervised. Optimised on

entire dataset
[5] 77 (1165 cycles) recordings from children with both

pathological and physiological murmurs
94.6% Ac Unsupervised. Optimised on

entire dataset
[6] 55 recordings (7530 cycles), 51 with valve replacements 97.95% Se, 98.2% Sp Unsupervised. Optimised on

entire dataset
[7] 71 recordings (357 cycles), 9 different pathologies 97.47% Ac No split between train, test sets
[8] 166 clean heart cycles from normal and pathological patients 84.0% Ac Unsupervised. No stated

segmentation tolerance
[9] 41 recordings (340 cycles). Mix of normal (32%), systolic

(36%) and diastolic murmurs (32%)
90.29% Ac Unsupervised

[10] 27 recordings of 30 s (997 cycles) from healthy subjects 92.1% Se, 88.4% P+ Unsupervised
[11] 30 clean recordings (20 s) from healthy subjects 96.2% Ac No split between train, test sets
[12] 120 recordings from children, 80 with congenital heart disease

(totalling 1200 s, 823 cycles in test set)
93.6% Ac on test set 50% train-test split

[13] 9 recordings (less than 5s). 55% pathological 99.0% Ac on whole cycle detection No split between train, test sets
[14] 9426.8 s of recordings, normal (22.2%) and various

pathologies (ASD, PDA, VSD and RHD)
S1: 98.53% Ac, S2 : 98.31% Ac,

Cycles: 97.37% Ac
Unsupervised. No stated
segmentation tolerance.

[15] 80 recordings from an unknown number of patients of 6-12 s
(40 healthy, 40 pathological recordings)

96% and 97% Se, 95% and 95%
P+(healthy and pathological)

Unsupervised algorithm. No
stated segmentation tolerance

[16] 26 clean recordings (565 cycles), 3 healthy subjects and 23
with various pathologies

94.9% and 95.9% Ac (S1and S2) No split between train, test sets
and no stated segmentation

tolerance
[17] 50 two-minute healthy and pathological recordings 99.0% Se and 98.6% P+ No split between train, test

sets. Results reported on 20%
of dataset

[18] 64 teaching quality recordings of less than 10 s (701 cycles).
Various pathologies

93.06% Ac, 99.43% Se. 93.56% P+ No split between train, test
sets. Results reported on

portion of dataset. No stated
segmentation tolerance.

[19] 52 recordings (14 controls, 38 with murmurs), 43 in test set
(2602 cycles)

83.05 ± 15.14% Ac
94.56 ± 6.58 G−measure

Ac denoted for correctly
segmented cycles.

G−measure is geometric
mean of Se and P+

[20] 80 patients, 8 pathological. Recordings of 20 s from four
auscultation sites (10045 S1, 9818 S2 sounds

S1: 94.6% Se and 97.7%P+

S2 : 95.2% Se and 96.1% P+

No split between train, test sets

[21] 46 clean recordings from 8 patients (2286 s). No pathologies
mentioned

97.6% Ac Ac computed from average of
8 fold cross-validation

[22] 17 patients, 44 recordings (30-60 s). No pathologies mentioned S1: 98.6% Se and 96.9% P+

S2 : 98.3% Se and 96.5% P+

Results computed from average
of 4 fold cross-validation

[23] 113 recordings of 8 s, 8% with coronary artery disease 98.8% Se, 98.6% P+on test set 73 test, 40 training recordings

of the studies, and important notes, such as whether any inde-
pendent test set was used to evaluate the presented algorithm.

Many methods of heart sound segmentation use an amp-
litude threshold after various transformations of the PCG
signal. Numerous researchers have applied this approach with
various features [4]–[9]. Chen et al. [10] used a portion of the
dataset used in this work, and adapted ECG analysis methods
based on the use of a threshold and k-means clustering to
identify the heart sounds. Others have used neural networks
to segment fundamental heart sounds, using Morlet wavelet
decomposition or frequency band and periodicity features [11],
[12]. Yan et al. [13] derived a characteristic moment wave-
form, based on the variance of the PCG over differing time-
scales, and showed promising results on a small dataset. Sun et
al. [14] used the same envelope as Yan et al. [13], but then
from this derived a modified Hilbert transform-based envelope.
Moukadem et al. [15] found the Shannon envelope after
applying the S-transform to locate the FHSs while Tang et
al. [16] employed dynamic clustering after atom decomposi-
tion, but both did not state a localisation tolerance. Naseri and
Homaeinezhad [17] employed a combined frequency-energy

feature, while Varghees and Ramachandran [18] employed the
phase from the analytical signal after finding the Shannon
entropy, but both optimised their approach on their entire
dataset and reported results on a small portion of this. Pap-
daniil et al. [19] outperformed many of these methods using
empirical mode decomposition and kurtosis features to select
non-Gaussian intrinsic mode functions (IMFs), and detected
the start and end positions of heart sounds within the selected
IMFs.

The introduction of probabilistic models for heart sound
segmentation led to improved accuracy. Gamero and Wat-
rous [20] applied two separate hidden Markov models
(HMMs), trained using mel-frequency cepstral coefficients,
to a large dataset of mostly healthy patients with notable
success. Ricke et al. [21] used embedded HMMs within each
state, along with mel-frequency cepstral coefficients, Shannon
energy and regression coefficients on a small dataset with
success. Gill et al. [22] were the first researchers to consider
timing durations within HMMs for heart sound segmentation,
incorporating the time to preceding and following amplitude
peaks in the homomorphic envelope as input features into
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the HMM, which yielded high segmentation accuracy on a
small dataset. Schmidt et al. [23] were the first researchers to
explicitly model the expected duration of heart sounds within
the HMM using a HSMM. These researchers performed a
rigorous assessment of this method on a noisy dataset and
demonstrated this method to be the current state-of-the-art.
However, limitations of this work include a small dataset of
only 113, eight-second recordings and the investigation of only
two input features.

This work builds on the work of these researchers by using
a substantially larger dataset, the assessment of additional
input features, an extension of the Viterbi algorithm and more
discriminative emission probability derivation using logistic
regression (LR) within the HSMM.

III. METHODS

The flow diagram in Figure 2 illustrates the different steps
used in the evaluation of the heart sound segmentation meth-
ods.

A. Study database

The study database consisted of 405 synchronous 30-40 s
PCG and ECG recordings from 123 de-identified adult patients
(roughly three recordings per patient) attending the Massachu-
setts General Hospital for cardiac screening or in-home record-
ings of people suffering from mitral valve prolapse (MVP).
Recordings were made using a Meditron (NY, USA) electronic
stethoscope, saved in uncompressed Wave format at 44.1 kHz
at 16 bit resolution [24]. Many of these PCG recordings were
corrupted by various sources of noise, including stethoscope
motion, breathing, intestinal sounds and talking. Comparing
the size of this database to others in Table I, one can see
this dataset represents one of the largest published in terms of
patient numbers and recording length.

Of the 123 patients, 38 were normal controls, 37 had
murmurs relating to MVP, 36 had benign murmurs, five had
aortic disease and seven had other miscellaneous conditions
(tricuspid regurgitation, endocarditis, asymmetric septal hyper-
trophy). Recordings were made from the parasternal, apical,
aortic and pulmonic auscultation positions, with patients sitting
forward, squatting or in the supine position. All diagnoses
were verified by a single clinical expert through echocardio-
graphic examination.

B. Data exclusion based on ECG signal quality

This section refers to step i) in Figure 2. The gold-standard
reference positions for the FHSs in the PCG were derived
from the synchronous ECG recordings. The R-peak and the
end-T-wave in the ECG correspond to the positions of the S1

and S2 sounds in the PCG respectively [3] (see Figure 1) and
were the reference positions for PCG-labelling in Section III-D
and evaluation of the segmentation algorithms in Section IV
(as shown in steps ii) and vii) in Figure 2). Therefore, it was
essential to ensure the correct detection of the R-peak and the
end-T-wave in the ECG. The correct positions of these markers
in the ECG were found by comparing the agreement between

Figure 2. Block diagram of the steps employed in the evaluation of the
segmentation algorithms.

four R-peak and four end-T-wave detectors. Intuitively, the
presence of noise and artefacts within the ECG will lead to
disagreement between semi-independent detectors for both the
R-peak and end-T-wave. Therefore, in order to ensure high-
quality periods of ECG signal and accurate localisation of the
R-peak and end-T-wave, the agreement between the R-peak
and end-T-wave detectors was assessed in order to derive an
ECG signal quality index (SQI).

The four R-peak detectors employed in this study were
“gQRS” (available on Physionet [25]), “jQRS” (previously
used in two studies [26], [27]), an algorithm based on parabolic
fitting [28] and a wavelet-based ECG delineator [29]. The
four end-T-wave detectors employed in this study were “ecg-
puwave” [30] (available on Physionet [25]), a method based on
maximising the area in a sliding window between successive
R-peaks [31], the same wavelet-based delineator mentioned
previously [29] and a method developed by Vazquez-Seisdedos
et al. [32] based on maximising the area of a trapezium fixed
at points within the ECG.

The performance of R-peak detectors is usually assessed
by beat-to-beat comparisons between the detected beats and
the reference beats. The standard adult tolerance window for
candidate R-peaks is 150 milliseconds (ms) [33]. However,
this is longer than the expected duration of a heart sound [23]
and was believed to be too wide a tolerance in this case. In
order to get a more robust estimate of the correct location
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Figure 3. Example of the accurate R-peak and end-T-wave positions derived
in a noisy ECG signal, based on the agreement between R-peak and end-
T-wave annotations. The positions of the four R-peak detections and four
end-T-wave detections are shown. The algorithm adjudicated R-peak and end-
T-wave, based on the four detections, is shown.

of peaks, in this study, if R-peak detectors agreed to within
100 ms, they were said to have agreed on the position of the
R-peak. The same tolerance was followed for the end-T-wave
positions.

The process for R-peak detection was:
• Band pass filter the ECG signal between 0.7 and 50 Hz

using zero-phase, forward-backward second-order But-
terworth filters to ensure no baseline wander and the
exclusion of high-frequency noise.

• Measure the agreement between all pairs of R-peak
detectors, where agreement is measured as per the “bxb”
algorithm, available from Physionet [25], which evaluates
the agreement between two sets of annotations within a
specified tolerance. The agreement was measured using
the F1 score (see Section III-I3). Then, select the three
R-peak detectors that had the highest product of their F1

scores, thereby excluding the R-peak detector that had the
lowest overall agreement with the other detectors over the
entire record. This allows the exclusion of a detector that
may perform poorly on a particular record, while keeping
three independent R-peak detectors.

• Over four second windows, the ECG SQI was labelled
as the F1 score of agreement between the chosen three
detectors. The choice of a four-second window was based
on the need for at least two heart cycles, even in the case
of low heart rates. Two heart cycles are needed, as many
of the end-T-wave detectors employed subsequently rely
on the detection of at least two R-peaks. This is equivalent
to methods employed by other authors, with a smaller
window size [34], [35]. The window was then shifted by
one second, leading to a second-by-second SQI.

• In windows of 100% F1 score, or complete agreement
between the three peak detectors within the 100 ms
tolerance, the adjudicated position of the R-peaks were
defined to be the R-peak position from the three detectors
with the maximum absolute value. Windows of less than
100% F1 score were not used for further analysis, as they
were deemed to have untrustworthy annotations.

The process for end-T-wave detection was:

• In windows of 100% F1 score (based on the R-peak
detections), find the end-T-wave positions from the four
detectors.

• Exclude the annotation furthest from the median of these
four annotations, allowing the exclusion of an outlier
annotation. If only three end-T-wave detections were
present, due to a missed detection, no exclusion was
performed. If fewer than three annotations were present,
a missed end-T-wave was marked and the ECG SQI was
set to zero.

• If the remaining three annotations were all within the 100
ms tolerance of each other, the adjudicated end-T-wave
position was marked as the median positions of the three
annotations. Otherwise, the ECG SQI was set to zero to
indicate an untrustworthy portion of the signal.

ECG signals, and the corresponding PCG signals, of at least
two heart cycles of continuous 100% SQI were kept for further
analysis. Periods of ECG without 100% SQI, based on the lack
of agreement between R-peak and end-T-wave annotations,
were excluded as their annotations were possibly erroneous.

Two cycles of continuous high-quality ECG were selected
as this would give the hidden semi-Markov models employed
in this study sufficient data to accurately assign state labels.
This is because such segments of data would consist of at
least one complete systolic and diastolic period, the durations
of which aid in the differentiation of the S1 andS2 sounds, as
systole is expected to be shorter than diastole.

The remaining data consisted of 10171.85 seconds of PCG,
including 12181 R-peaks and 11627 end-T-waves (correspond-
ing to the same number of S1 and S2 sounds), from 112
patients. An example of the R-peak and end-T-wave detection
in the ECG is shown in Figure 3. It is important to note that the
ECG signal, and the derived R-peak and end-T-wave locations,
were only used for heart sound labelling and evaluation of the
segmentation models. They were not used in the heart sound
segmentation process itself. Furthermore, ECG signal quality
has little to no impact on PCG signal quality, except in the
case of motion artifact, which is limited in such a dataset of
recordings performed on adults. Therefore, selection of high-
quality ECG does not bias this study towards the selection of
high-quality PCG recordings.

C. Heart sound duration distributions

A key component of the HSMM models used in this study
is an estimate of the probability density function of the time
expected to remain in each state. In the case of heart sound
analysis when using a four-state HMM, this is the duration
in each of the four major components of a heart cycle. These
are: 1) the S1 sound, 2) the systolic period between S1 and
the S2 sound, 3) the S2 sound and 4) the diastolic period
between S2 and S1 (see Figure 1). The duration of each
of these components was modelled as described by Schmidt
et al. [23], who modelled the duration of each state as a
Gaussian distribution modelled on their own annotated dataset.
These distributions are heart rate dependant. Therefore, the
reference heart rate for each PCG was calculated using the
R-peak locations computed in Section III-B. This section is
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not illustrated in Figure 2, but the durations are intrinsic to
steps ii) and vii) of the flow diagram.

D. ECG-derived heart sound labelling

In order to train the segmentation algorithms on the PCG
data, it was necessary to label the S1 and S2 sounds within
the PCG recordings using an external reference signal. The
references for the positions of the S1 and the S2 sounds within
the PCGs were the R-peak and end-T-wave positions were
computed from the synchronous ECG signals in Section III-B.
This is shown as step ii) in Figure 2.

As the start of S1 coincides with the R-peak of the ECG [3],
the period from each R-peak to the mean S1 duration (S1,
found from [23] in Section III-C) from each R-peak was
labelled as a S1 sound.

The S2 sound occurs at approximately the end-T-wave in the
ECG [3]. Therefore, labelling based on only the end-T-wave
position would be erroneous. However, the amplitude of the
S2 sound would reach a maximum in the vicinity of the end-
T-wave. Therefore, the centre of the S2 sound was found by
searching for the maximum peak in the Hilbert envelope (see
Section III-H) of the PCG signal within a specified search
window around the end-T-wave. This search window was
set to the position of the end-T-wave, plus and minus the
longest expected duration of S2 (S2 ± σS2

). The position of
the maximum value of the Hilbert envelope within this search
window was marked as centre of the S2 sound. An interval
equal to the length of the expected S2 sound, centred on this
maximum position, was labelled as the S2 sound. The period
between the S1 and S2 sounds was labelled as systole, while
those periods between S2 and S1 were labelled as diastole. An
example of a labelled PCG recording is shown in Figure 1.

E. Hidden semi-Markov models

HMMs are a statistical framework used to describe se-
quential data. They operate by making inferences about the
likelihood of being in certain discrete “hidden states”, moving
between those states and seeing an observation generated by
each state. In this work, the HMM was first order, with the
hidden sequence consisting of the four states of the heart (S1,
systole, S2, diastole), while the observed sequence is the PCG
signal, or features computed from the PCG signal. An HMM
is governed by the “Markov property”, which states that the
next state is only dependant on the state that is occupied
at the current time step. This is valid for heart sounds, as
each successive state can only be reached from one particular
previous state. A HMM can be defined as:

λ = (A,B, π) (1)

where A is the transmission matrix, B is the emission or ob-
servation distribution and π is the initial state distribution [36].
Let the hidden states be defined as ξ = [ξ1, ξ2, ..., ξN ] where
N is the total number of states. In this work, N = 4 and
ξ1 refers to S1, ξ2 refers to systole, ξ3 refers to S2 and ξ4
refers to diastole. Let the duration of an entire sequence be
T and the state at time t be qt with the entire sequence

of states being Q [36]. Let the observation sequence be
O = {O1,O2, ...OT }, where Ot is a vector of feature values
at time t.
A = {aij} defines the probability of moving from state i at

time t to state j at time t+ 1. A four-state heart sound HMM
is a case of a “non-ergodic” HMM, where each state is only
accessible from one specific other state. For example, S2 has
to precede diastole; diastole cannot be preceded by systole or
S1.
B = {bj(Ot)}, 1 ≤ j ≤ N defines the probability that

state j generates the observation vector Ot at time t.
The initial state distribution, π = {πi} defines the probab-

ility of being in state i at the first time point.
In the case of heart sound segmentation, a utility of the

HMM is the computation of the optimal state sequence, given a
model, λ, and an observation sequence, O, where optimality is
defined as the most likely sequence of states. Cycling through
every combination of Q or order to find the optimal sequence
is infeasible, even for short time sequences. Therefore, a
dynamic programming method called the Viterbi algorithm is
employed to solve the most likely state sequence [36]:

We define δt(j) as the likelihood of the most probable state
sequence that accounts for the first t observations and ends
in state j at time t, while δ1(j) = πjbj(O1). Incorporating
the information from the previous time step, δt(j) can be
calculated by induction using:

δt(j) = [ max
1≤i≤N

δt−1(i)aij ] · bj(Ot) (2)

The argument which maximised (2), which is needed to
track the optimal state sequence, is stored in the matrix ψt(j):

ψt(j) = [arg max
1≤i≤N

δt−1(i)aij ] (3)

This matrix stores the most likely previous state i at time t,
if in state j at time t+ 1. This allows the backtracking of the
most likely sequence of states, q∗t when reaching the end of
the sequence using:

q∗T = arg max
1≤i≤N

[δT (i)] (4)

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, ...1 (5)

A major limitation of the standard HMM is that it does
not explicitly incorporate any information about the expected
duration of each state. Without incorporating this information,
the state durations are governed only by the self-transition
probability aii. This results in a geometric distribution for
the duration expected to remain in each state [36]. This
distribution monotonically decreases, resulting in the most
likely state duration always being one time step. This is poorly
suited for PCG analysis. In order to improve the duration
modelling, an extra parameter is needed in the model.

Let us define the new model as λ = (A,B, π, p), where
p = {pi(d)} is the explicitly defined probability of remaining
in state i for duration d (derived in Section III-C).

Then, modifying the Viterbi algorithm to include the dura-
tion densities, we find [23], [37]:
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δt(j) = max
d

[
max
i6=j

[δt−d(i) · aij ] · pj(d) ·
d−1∏
s=0

bj(Ot−s)

]
(6)

with 1 ≤ i, j ≤ N , 1 ≤ t ≤ T and 1 ≤ d ≤ dmax where in
this case dmax, the maximum time expected to remain in any
one state, is set to the duration of an entire heart cycle. This
is done to ensure tractability of the algorithm.

The observation density,
∏d
s=1 bj(Ot−s), is now the cal-

culation of the probability of observing all the observations
from time t − d to time t in state j. It should be noted that
when incorporating duration densities as in (6), the entries
for the transition matrix aij in the case of a four-state heart
sound model become unity for the transition from one state to
another, provided it is a permissible transition (for example,
S1 to systole, or S2 to diastole). This is due to the fact that
the transition between states is now only dependant on the
duration remaining in each state, and no longer the probability
of transitioning between states.

Equation 6 is maximised according to two arguments, i and
d, which are stored in matrices ψt(j) and Dt(j). The psuedo-
code for the standard backtracking procedure for the HSMM
is shown in [23]. This is then called a hidden semi-Markov
model (HSMM)1, as only the transition between different
states is Markovian [37]. Since the human heart has clear
upper and lower bounds on the duration of the components of
the heart cycle (because of mechanical limitations), we expect
that the incorporation of such information should help improve
segmentation performance.

F. Extended Viterbi Algorithm

The standard backtracking procedure for decoding the most
likely sequence of states when using a HSMM, as pointed out
by Schmidt et al. [23] and Yu [38], is limited by the fact that
states are required to start and end at the start and end of
the PCG signal. This is infeasible, as a PCG recording can
begin and end at any stage of the heart cycle. In order to
a resolve this, an extended Viterbi algorithm which extends
beyond the beginning and end of the PCG is proposed, shown
in Algorithm 1.

In short, this algorithm allows the possible state durations
to extend beyond the beginning and end of the PCG sequence,
while only considering observations from within the PCG for
emission probability estimation. This algorithm uses the equa-
tions for the “general assumption” of the forward-backward
algorithm and Viterbi algorithm from Yu [38].

G. Logistic regression HSMM

A further modification to the HSMM we introduced was
to incorporate logistic regression (LR) into the model. LR-
derived emission or observation probability estimates were
used instead of Gaussian or Gamma distributions as employed
in related work [23], [37], as the incorporation of LR into the
HMM should allow for greater discrimination between states.

1Also known as an explicit duration, variable-duration, segmental or
duration-dependant HMM [38]

Algorithm 1 The extended Viterbi algorithm for use with
HSMMs
δ1(j) = πjbj(O1) 1 ≤ j ≤ N
for t = 2 : T + dmax − 1

for i, j = 1 : N
for d = 1 : dmax
startt = t− d
if startt < 1
startt = 1

elseif startt > T − 1
startt = T − 1

end
endt = t
if endt > T
endt = T

end
δt(j) = ...

maxd

[
maxi6=j [δstartt(i) · aij ] · pj(d) ·

∏endt
s=startt

bj(Os)
]

Dt(j) = ...

arg maxd

[
maxi 6=j [δstartt(i) · aij ] · pj(d) ·

∏endt
s=startt

bj(Os)
]

ψt(j) = arg max1≤i≤N
[
δt−Dt(j)(i)aij

]
end

end
end
T∗ = arg maxt[δt=T :T+dmax−1(i)] 1 ≤ i ≤ N
q∗T∗ = arg maxi[δT∗(i)]
t = T ∗

while t > 1
d∗ = Dt(q

∗
t )

qt−d∗:t−1 = q∗t
q∗t−d∗−1 = ψt(q

∗
t )

t = t− d∗
end

This is similar to the use of support vector machine-based
emission probabilities [39].

Logistic regression is a binary classification model that
maps predictor variables, or features, to a binary response
variable using the logistic function. The logistic function,
σ(a), can be defined by σ(a) = 1

1+exp(−a) [40].
Using the logistic function above, the probability of a

specific class or state, given the input features or observations,
can be defined by:

P [qt = ξj |Ot] = σ(w′Ot) (7)

where w are the weights of the model, applied to each input
feature, and trained using iteratively reweighted least squares
on the training data.

A one-vs-all approach was implemented, training one LR
model for the observations from each state in the model.
Thereafter, the probability of an observation given a state,
bj(Ot|ξj), as required for the HSMM, was found using Bayes’
rule:

bj(Ot) = P [Ot|qt = ξj ] =
P [qt = ξj |Ot]× P (Ot)

P (ξj)
(8)
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where P (Ot) is found from a multivariate normal distribution
computed from the features from the entire training set and
P (ξj) is found from π, the initial state probability distribution.
The inputs to the LR models are the signal-derived features
described in Section III-H.

H. Feature extraction

The segmentation algorithms used a combination of four
input features (This is step v) in Figure 2).

Before feature extraction, all recordings were down-sampled
to 1 kHz using a poly-phase anti-aliasing filter. The majority
of the frequency content of the fundamental heart sounds (S1

and S2) is below 150 Hz [41] and hence the Nyquist-Shannon
sampling criterion [42] was satisfied. The following features
were then calculated:

1) Homomorphic envelogram: The homomorphic envelo-
gram, derived by exponentiating the low-pass filtered natural
logarithm of a signal [43], has been used by numerous re-
searchers for extracting the envelope of PCG signals [9], [22],
including the state-of-the-art segmentation algorithm [23].

2) Hilbert envelope: Messer et al. [44] and Kumar et
al. [45] calculated the envelope of the PCG signal using the
Hilbert transform. The Hilbert transform extracts the analytic
signal which excludes the negative frequency components of
a signal [43], and the Hilbert envelope is calculated from the
absolute value of the Hilbert transform.

3) Wavelet envelope: Wavelet analysis of heart sounds
has been extensively explored. However, there is limited
agreement on the optimal wavelet to use when denoising,
segmenting or classifying heart sounds. Some researchers have
argued that the Morlet family is best suited for heart sound
analysis [11], [46] while others have rationalised the use of
the Daubechies wavelet family [5], [9], [44], [47]–[49].

In this study, the choice of wavelet was determined ex-
perimentally using the labelled heart sounds computed from
Section III-D. This is shown as step iv) in Figure 2.

The heart sound recordings in the training set (see Sec-
tion III-I1) were decomposed using the discrete wavelet trans-
form (DWT) with various wavelet families and decomposition
levels2. The absolute value of the detail coefficients for each
wavelet family and decomposition level were computed, in
order to exclude frequency content outside of the target
wavelet range and to extract a positive-valued envelope. The
envelope values were summed for each state in the heart sound
recordings. The wavelet family and decomposition level that
yielded the highest ratio of the sum of the detail coefficients for
the S1 and S2 sounds compared to the sum over other intervals
across all recordings was selected for further use. This ratio
gives an indication of how well each wavelet discriminates
between the FHSs and other regions of the heart sound
recordings. Therefore, a wavelet envelope computed using
such a wavelet would provide the best overall discrimination
between the FHSs and other sounds or noise for all heart sound
recordings.

2These included Haar, Daubechies, symlet, Coiflet, biorthogonal and reverse
biorthogonal wavelets at decomposition levels 1-10. Morlet wavelets were not
used since a DWT cannot be performed using the Morlet wavelet.

4) Power spectral density envelope: The majority of the
frequency content of the S1 and S2 sounds is below 150
Hz with a peak at 50 Hz [41]. Based on these frequencies,
the final feature was derived from the mean power spectral
density (PSD) between 40 and 60 Hz, found in overlapping
windows of 0.05 s in width with 50 % overlap. This resulted in
a envelope of PSD values. The window size used ensures that
the frequency content of the shortest expected fundamental
heart sound (0.05 s) is covered by an analysis window. The
PSD was calculated using the short time Fourier transform
after Hamming windowing.

The feature vectors for each recording were individually
normalised by subtracting their mean and dividing by their
standard deviation. Following Schmidt et al. [23], after feature
extraction and normalisation, the resulting feature vectors were
down-sampled further to 50 Hz using a poly-phase anti-
aliasing filter, in order to increase the speed of computation.

I. Model training & evaluation

The parameters of the HSMM model were trained using
the labelled PCG sequences described in Section III-D, which
were divided as follows:

1) Training and test data split: In order to avoid over-
training of the model, the dataset was randomly halved into
training and test sets (step iii) in Figure 2). The number
of recordings for each condition (normal, murmurs relating
to MVP, benign murmurs, aortic disease and miscellaneous
conditions) was split between the two sets in equal propor-
tion, ensuring stratification by patient. This ensured that no
recordings from any patient were in both the training and test
sets and a balanced representation of abnormalities in both
training and test sets.

2) Training: The transition matrix probabilities, aij , and
the emission probabilities, B, were optimised on all data in
the training dataset. In the case of B, two methods were used:

In the case of the MVN emission distributions, a MVN
distribution was computed for each state by finding the means
and covariances of the input features for each state from
the training recordings. This can be defined as bj(Ot) ∼
Nµj ,Σj (Ot), where N is a single or multivariate normal
distribution, with µj and Σj being the respective means and
covariances of the different input features for state j.

In the case of the LR-based observation probabilities,
as stated in Section III-G, the emission probabilities were
computed using the likelihood of each state from each one-
versus-all LR model. Random sub-sampling for each state was
performed to ensure that there were a balanced number of
samples in each class of the one-versus-all LR models.

In order to compare the LR-HSMM method to multivariate
normal (MVN-based) observation distributions used previ-
ously by Schmidt et al. [23], both of these methods were tested
on our dataset in order to directly compare results. Therefore,
the four methods tested in this study were:

1) The MVN-based method, using a single homomorphic
envelope feature as described by Schmidt et al. [23].

2) The MVN-based method, but using the Hilbert, PSD,
wavelet and homomorphic features.
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Table II
GROSS RESULTS OF ALGORITHMS ON TRAIN (GREY) AND TEST SETS (%) USING VARIOUS INPUT FEATURES, AVERAGED PER PATIENT AND ACROSS ALL

100 ITERATIONS. THE FIRST LINE SHOWS THE PREVIOUS STATE-OF-THE-ART. THE LAST LINE SHOWS THE RESULTS USING THE PROPOSED METHOD
(BOLD).

Features Viterbi
Algorithm Se P+ Ac F1

S1 F1
S2 F1

1
a

MVN Homomorphic

Standard
[23]

85.09 ± 1.31 86.17 ± 1.27 77.49 ± 1.68 85.98 ± 1.39 85.34 ± 1.32 85.62 ± 1.29
85.74 ± 1.57 86.85 ± 1.53 78.35 ± 2.06 86.58 ± 1.56 86.07 ± 1.70 86.28 ± 1.55

b Extended 94.29 ± 0.89 94.61 ± 0.86 90.61 ± 1.35 96.15 ± 0.85 92.73 ± 1.13 94.45 ± 0.88
94.66 ± 0.90 94.93 ± 0.88 91.15 ± 1.36 96.50 ± 0.84 93.06 ± 1.17 94.79 ± 0.89

2
a

MVN

Hilbert,
PSD,
Wavelet,
Homomorphic

Standard 83.08 ± 1.48 83.84 ± 1.45 74.05 ± 1.91 83.67 ± 1.52 83.32 ± 1.57 83.45 ± 1.47
83.62 ± 1.57 84.45 ± 1.53 74.82 ± 1.99 84.20 ± 1.56 83.93 ± 1.72 84.02 ± 1.55

b Extended 92.74 ± 1.05 92.93 ± 1.04 87.90 ± 1.57 94.28 ± 1.07 91.37 ± 1.23 92.83 ± 1.04
93.10 ± 1.04 93.29 ± 1.03 88.46 ± 1.57 94.67 ± 1.02 91.70 ± 1.29 93.19 ± 1.04

3
a

LR Homomorphic
Standard 87.51 ± 1.29 88.72 ± 1.23 80.97 ± 1.68 87.82 ± 1.29 88.45 ± 1.38 88.10 ± 1.26

87.87 ± 1.34 89.10 ± 1.28 81.49 ± 1.77 88.11 ± 1.36 88.91 ± 1.43 88.47 ± 1.31

b Extended 94.88 ± 0.82 95.28 ± 0.79 91.66 ± 1.25 96.70 ± 0.80 93.43 ± 1.04 95.08 ± 0.80
95.22 ± 0.88 95.60 ± 0.85 92.18 ± 1.35 97.00 ± 0.86 93.79 ± 1.12 95.40 ± 0.86

4
a

LR

Hilbert,
PSD,
Wavelet,
Homomorphic

Standard 87.58 ± 1.28 89.16 ± 1.18 81.22 ± 1.66 87.97 ± 1.32 88.80 ± 1.31 88.35 ± 1.23
87.84 ± 1.35 89.44 ± 1.25 81.62 ± 1.76 88.18 ± 1.37 89.13 ± 1.42 88.62 ± 1.30

b Extended 95.09 ± 0.80 95.69 ± 0.75 92.11 ± 1.21 96.70 ± 0.84 94.05 ± 0.97 95.38 ± 0.78
95.34 ± 0.88 95.92 ± 0.83 92.52 ± 1.33 96.95 ± 0.90 94.29 ± 1.08 95.63 ± 0.85

3) The LR-HSMM method using a single homomorphic
envelope feature.

4) The LR-HSMM method using the Hilbert, PSD, wavelet
and homomorphic features.

In addition, a comparison was made between the use of the
standard Viterbi algorithm and the extended Viterbi algorithm
for each method listed above.

3) Model evaluation: The four segmentation methods were
evaluated on their ability to accurately locate the S1 and
S2 sounds within the test set of recordings. The reference
positions for the S1 and S2 sounds were the R-peaks and
end-T-waves computed in Section III-B, as shown in step vii)
in Figure 2. An S1 sound was labelled as correctly identified if
the start of the segmented S1 sound was found to be within 100
ms of the R-peak of the ECG. This tolerance is based on the
recognised ECG R-peak detection tolerance of 150 ms [33],
which, as it is approximately the length of the fundamental
heart sounds, was shortened to 100 ms. Similarly, an S2 sound
was labelled as correctly segmented if the centre of this S2

sound was found to be within 100 ms of the corresponding
end-T-wave.

The performance of the segmentation algorithms were eval-
uated using the F1 score, which is defined as

F1 =
2× P+ × Se
P+ + Se

(9)

where Se is sensitivity (or recall) and P+ is positive pre-
dictivity (or precision). The F1 score was used as it gives a
single harmonic mean of Se and P+. Metrics such as accuracy
(Acc = TP/(TP + FP + FN)) in such cases do not give
an adequate representation of the results, as no true negatives
are included. However, Se, P+ and Acc are reported to allow
comparison to previous works.

In order to give a robust indication of segmentation per-
formance, the process of splitting the data into a training
and test set, the wavelet feature optimisation, the training of
the HSMM and the evaluation on the test set was repeated

100 times and the results averaged, as shown in step vii) in
Figure 2. Significance testing was then performed using a two-
sided paired t-test on the 100 F1 scores from the test datasets.

IV. RESULTS

The wavelet optimisation (see Section III-H3 and step
iv) in Figure 2) resulted in the reverse biorthogonal 3.9 or
Daubechies 10 wavelet at decomposition level three being
selected as the optimal wavelet for each of the 100 evaluation
iterations.

The gross performance results of the four algorithms under
consideration on both the training and test sets, using the
different features and Viterbi algorithms, are presented in
Table II. This table illustrates the scores for the combined S1

and S2 sounds, while also presenting the F1 scores for each
sound separately to give an indication of performance on the
different sounds. These gross scores were calculated on a per-
patient basis, summing the total number of sounds for each
patient in the train and test datasets, calculating the different
metrics for each patient, then averaging over patients in each of
the training and test sets. The results over the 100 iterations
were then averaged. The standard deviation of the average
results over the 100 evaluation iterations is also shown. The
results of the current state-of-the-art algorithm [23], can be
seen in the first two lines of the table (algorithm 1a in Table II),
achieving an average F1 score of 86.28 ± 1.55% on the
test datasets. The proposed algorithm, combining the Hilbert
envelope, PSD, wavelet envelope and homomorphic envelope
features along with the LR classifier and extended Viterbi
algorithm, is shown in the last two lines of Table II (algorithm
4b), achieving an average F1 score of 95.63± 0.85%.

The incorporation of LR into the model alone resulted in
a significant improvement of F1 score between the current
state-of-the-art algorithm (1a, 86.28 ± 1.55%) and the LR-
Homomorphic algorithm with standard Viterbi algorithm (3a,
88.47± 1.31%), (p<0.001).
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Table III
AVERAGE RESULTS OF ALGORITHMS 1a AND 4b FROM TABLE II WHEN AVERAGED ACROSS ALL RECORDINGS RATHER THAN PER PATIENT. THESE SHOW
THE NUMBERS AND RESULTS AVERAGED ACROSS ALL 100 ITERATIONS FOR THE TRAIN (GREY) AND TEST SETS. THE AVERAGE NUMBER OF S1 AND S2

SOUNDS IS SHOWN, AS WELL AS THE NUMBER OF TRUE POSITIVES (TP ), FALSE NEGATIVES (FN ), FALSE POSITIVES (FP ) AND F1 SCORE.

Features Viterbi
Algorithm S1 S2 TP FN FP F1(%)

1a MVN Homomorphic Standard
[23]

6117.07 6012.56 10613.02 1516.61 1380.26 87.98 ± 1.06
5686.93 5597.44 9945.63 1338.74 1214.19 88.61 ± 1.33

4b LR
Hilbert,PSD,

Wavelet, Extended 6117.07 6012.56 11649.84 479.79 410.92 96.31 ± 0.58
Homomorphic (this work) 5686.93 5597.44 10858.53 425.84 364.4 96.49 ± 0.64

The introduction of the Hilbert, PSD and wavelet features,
in addition to the homomorphic feature, resulted in a drop
in performance when using the MVN-based HSMM (2a,
84.02± 1.55% as compared to 1a, 86.28± 1.55%). However,
the addition of these same features resulted in a significant
improvement in the performance of the LR-based HSMM
(p<0.05, comparing the F1 scores of algorithms 3a to 4a and
3b to 4b).

There was a significant improvement in F1 score when
using the extended Viterbi algorithm compared to the standard
Viterbi algorithm on all combinations of features and MVN or
LR emission probabilities (p<0.001). This resulted in at least
a 6% improvement in F1 scores across all algorithms.

The average performance results for algorithms 1a and 4b,
averaged over all recordings in the training and test sets, rather
than by patient, can be seen in Table III. The average number
of S1 and S2 sounds across the 100 iterations can be seen, as
well as the performance metrics. A significant improvement
on the current state-of-the-art algorithm can be seen (88.61±
1.33% to 96.49± 0.64%) (p<0.001).

An illustration of the segmentation accuracy using this
method on a noisy test recording is shown in Figure 4. Note
the excellent performance of the algorithm in ignoring heart
sound-like noise in second systolic period, but the correct
identification of the following S2 sound which was corrupted
by noise.

V. DISCUSSION

The optimal wavelets selected for all 100 evaluation itera-
tions (see Section III-H3 and step iv) in Figure 2) agree with
intuition, as their centre frequencies were between 65 and 85
Hz, as expected for the FHSs [41].

The results in Tables II and III , with similar results
between the training and test set results, illustrate that the
algorithms were not over-trained on the training data. The
small values for the standard deviations in these tables indicate
consistent results for the LR and MVN algorithms across the
100 evaluation iterations, with generally smaller values for
the LR algorithm. This indicates that the results with the LR
algorithm are more consistent than the MLR-based algorithms.

Comparing the results of the method developed by Schmidt
et al. [23] between Tables I and II (98.8% Se and 98.6%
P+ in Table I and 85.74% Se and 86.85% P+ in Table II)
shows a drop in Se and P+ on our dataset when comparing
test set results. This indicates that our data may be more noisy
or heterogeneous, and therefore more difficult to analyse. The

Figure 4. Example of a segmented, noisy, PCG using the LR-HSMM method
with a clean ECG for reference. The positions of the detected R peaks (*) and
the end-T-waves (o) are demarcated in the ECG. The four LR-HSMM-derived
states of the heart cycle (S1, systole, S2 and diastole) are shown as a solid
line, which are seen to coincide with the ECG reference positions. The noise
in the systolic region of the second cycle can be seen to be ignored, while
the S2 is correctly segmented.

low number of pathological cases in their dataset (8%) may
also account for this.

The significant improvement in performance between the
current state-of-the-art algorithm (1a, 86.28± 1.55%) and the
LR algorithm with the homomorphic feature and standard
Viterbi algorithm (3a, 88.47±1.31%) indicates that the simple
introduction of LR as opposed to the MVN-based emission
probabilities significantly improves segmentation performance.
This is thought to be due to the higher discrimination between
states afforded by the LR model.

The introduction of the three additional features, resulted
in a drop in performance when using the MVN-based HSMM
(comparing algorithm 1a to 2a and 1b to 2b). This was thought
to be due to the MVN distribution being unable to adequately
model such a higher dimensional feature space effectively.
However, the introduction of these features when using the
LR model resulted in a slight, yet significant improvement
in performance, and the best performing algorithm in this
work. This combination of features was thought to enhance
the segmentation as these features contribute information about
the amplitude of the PCG, but also frequency information, in
the form of the wavelet transform and PSD feature.

The largest contributor to the improved segmentation per-
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formance was the introduction of the extended Viterbi al-
gorithm. This modification resulted in significant improvement
across all algorithms in Table II (when comparing algorithm
1a to 1b, 2a to 2b and so on), where at least 6% increase in
F1 score can be seen. The weakness of the standard Viterbi
algorithm was especially noted in short recordings with a short
diastolic period before the onset of the first heart sound. In
this case, as the standard Viterbi algorithm tried to assign
a complete diastole state before the onset of S1, the first
heart sound is often missed. When using the extended Viterbi
algorithm, FS1

1 scores were higher than FS2
1 . This can be

attributed to the patients with MVP in this dataset having
systolic murmurs that often mask S2, making it more difficult
to detect.

There was an improvement in performance between the
average results in Table III as compared to the gross results of
Table II. The lower performance of the gross averages, which
are derived by averaging per patient, indicate that specific
patients (which may have fewer heart sounds as compared
to others in the dataset) diminish the performance of the
segmentation algorithms. This may be due to these patients
having recordings contaminated by noise or having murmurs
that obfuscate the positions of the FHSs.

The inclusion of explicit timing durations helps improve
the differentiation of heart sound-like noise from noisy heart
sounds (see Figure 4). Approaches which do not incorporate
temporal duration and ordering information (like neural net-
works or other static machine learning approaches) may not
perform as well in such circumstances.

VI. CONCLUSION

The work presented here investigated a new method for the
segmentation of the S1 and S2 heart sounds from a single
channel PCG recording with no external reference using a
modified HSMM. The introduction of LR, the extended Viterbi
algorithm and additional features into the HSMM each resulted
in a significant improvement in segmentation performance, the
combination of which significantly improved upon the current
state-of-the-art. As demonstrated on this dataset, consisting of
a large proportion of pathological recordings, this method is
able to accurately segment the heart sounds in noisy, real-
world, PCGs with murmurs and other abnormal sounds.
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