Rank |
Team name |
Team member(s) |
Paper |
Code |
1 |
prna |
Annamalai Natarajan, Yale Chang, Sara Mariani, Asif Rahman, Gregory Boverman, Shruti Vij and Jonathan Rubin |
A Wide and Deep Transformer Neural Network for 12-Lead ECG Classification |
Link (86MB) |
2 |
Between a ROC and a heart place |
Zhibin Zhao, Hui Fang, Samuel Relton, Ruqiang Yan, Yuhong Liu, Zhijing Li, Jing Qin and David Wong |
Adaptive lead weighted ResNet trained with different duration signals for classifying 12-lead ECGs |
Link (30MB) |
3 |
HeartBeats |
Zhaowei Zhu, Han Wang, Tingting Zhao, Yangming Guo, Zhuoyang Xu, Zhuo Liu, Siqi Liu, Xiang Lan, Xingzhi Sun and Mengling Feng |
Classification of Cardiac Abnormalities From ECG Signals Using SE-ResNet |
Link (145MB) |
4 |
Triage |
Maximilian Oppelt, Maximilian Riehl, Felix Kemeth and Jan Steffan |
Combining Scatter Transform and Deep Neural Networks for Multilabel ECG Signal Classification |
Link (79MB) |
5 |
Sharif AI Team |
Hosein Hasani, Adeleh Bitarafan and Mahdieh Soleymani |
Classification of 12-lead ECG Signals with Adversarial Multi-Source Domain Generalization |
Link (25MB) |
6 |
DSAIL_SNU |
Seonwoo Min, Hyun-Soo Choi, Hyeongrok Han, Minji Seo, Jin-Kook Kim, Junsang Park, Sunghoon Jung, Il-Young Oh, Byunghan Lee and Sungroh Yoon |
Bag of Tricks for Electrocardiogram Classification with Deep Neural Networks |
Link (99MB) |
7 |
UMCUVA |
Max Bos, Rutger van de Leur, Jeroen Vranken, Deepak Gupta, Pim van der Harst, Pieter Doevendans and René van Es |
Automated Comprehensive Interpretation of 12-lead Electrocardiograms Using Pre-trained Exponentially Dilated Causal Convolutional Neural Networks |
Link (286MB) |
8 |
CQUPT_ECG |
Jiabo Chen, Tianlong Chen, Bin Xiao, Xiuli Bi, Yongchao Wang, Weisheng Li, Han Duan, Junhui Zhang and Xu Ma |
SE-ECGNet: Multi-scale SE-Net for Multi-lead ECG Data |
Link (221KB) |
9 |
ECU |
Najmeh Fayyazifar, Selam Ahderom, David Suter, Andrew Maiorana and Girish dwivedi |
Impact of Neural Architecture Design on Cardiac Abnormality Classification Using 12-lead ECG Signals |
Link (151KB) |
10 |
PALab |
wenxiao jia, Xiao Xu, Xian Xu, Yuyao Sun and Xiaoshuang Liu |
Arrhythmia Detection and Classification of 12-lead ECGs Using a Deep Neural Network |
Link (402KB) |
11 |
HITTING |
Radovan Smisek, Andrea Nemcova, Lucie Marsanova, Lukas Smital, Martin Vítek and Jiri Kozumplik |
Cardiac Pathologies Detection and Classification in 12-lead ECG |
Link (58MB) |
12 |
Gio_Ivo |
giovanni bortolan, Ivaylo Christov and Iana Simova |
Rule-Based methods and Deep Learning Networks for Automatic Classification of ECG |
Link (87MB) |
13 |
AUTh Team |
Charilaos Zisou, Andreas Sochopoulos and Konstantinos Kitsios |
Convolutional Recurrent Neural Network and LightGBM Ensemble Model for 12-lead ECG Classification |
Link (52MB) |
14 |
BioS |
Mateusz Soliński, Michał Łepek, Antonina Pater, Katarzyna Muter, Przemysław Wiszniewski, Dorota Kokosińska, Judyta Salamon and Zuzanna Puzio |
12-lead ECG Arrythmia Classification Using Convolutional Neural Network for Mutually Non-Exclusive Classes |
Link (58MB) |
15 |
UC_Lab_Kn |
Lucas Weber, Maksym Gaiduk, Wilhelm Daniel Scherz and Ralf Seepold |
Cardiac Abnormality Detection in 12-lead ECGs with Deep Convolutional Neural Networks Using Data Augmentation |
Link (208KB) |
16 |
Cardio-Challengers |
Akash Kirodiwal, Apoorva Srivastava, Ashutosh Dash, Ayantika Saha, Gopi Vamsi Penaganti, Sawon Pratiher, sazedul alam, Amit Patra, Nirmalya Ghosh and Nilanjan Banerjee |
A Bio-toolkit for Multi-Cardiac Abnormality Diagnosis Using ECG Signal and Deep Learning |
Link (987KB) |
17 |
JuJuRock |
Po-Ya Hsu, Po-Han Hsu, Tsung-Han Lee and Hsin-Li Liu |
Multi-label Arrhythmia Classification From 12-Lead Electrocardiograms |
Link (36MB) |
18 |
Minibus |
Ran Duan, Xiaodong He and Ouyang Zhuoran |
MADNN: A Multi-scale Attention Deep Neural Network for Arrythmia Classification |
Link (17MB) |
19 |
Desafinado |
Durmus Umutcan Uguz, Felix Berief, Steffen Leonhardt and Christoph Hoog Antink |
Classification of 12-lead ECGs Using Gradient Boosting on Features Acquired With Domain-Specific and Domain-Agnostic Methods |
Link (255MB) |
20 |
Team UIO |
Bjørn-Jostein Singstad and Christian Tronstad |
Convolutional Neural Network and Rule-Based Algorithms for Classifying 12-lead ECGs |
Link (19KB) |
21 |
Eagles |
Andrew Demonbreun and Grace Mirsky |
Automated Classification of Electrocardiograms Using Wavelet Analysis and Deep Learning |
Link (60MB) |
22 |
BUTTeam |
Tomas Vicar, Jakub Hejc, Petra Novotna, Marina Ronzhina and Oto Janousek |
ECG Abnormalities Recognition Using Convolutional Network With Global Skip Connections and Custom Loss Function |
Link (124MB) |
23 |
DSC |
Georgi Nalbantov, Svetoslav Ivanov and Jeffrey van Prehn |
Multi-Class Classification of Pathologies Found on Short ECG Signals |
Link (5.4MB) |
24 |
Pink Irish Hat |
Halla Sigurthorsdottir, Jérôme Van Zaen, Ricard Delgado-Gonzalo and Mathieu Lemay |
ECG Classification With a Convolutional Recurrent Neural Network |
Link (7.6MB) |
25 |
Madhardmax |
Hardik Rajpal, Madalina Sas, Rebecca Joakim, Chris Lockwood, Nicholas S. Peters and Max Falkenberg |
Interpretable XGBoost Based Classification of 12-lead ECGs Applying Information Theory Measures From Neuroscience |
Link (7.0MB) |
26 |
Care4MyHeart |
Mohanad Alkhodari, Leontios J. Hadjileontiadis and Ahsan H. Khandoker |
Identification of Cardiac Arrhythmias from 12-lead ECG using Beat-wise Analysis and a Combination of CNN and LSTM |
Link (43MB) |
27 |
MCIRCC |
Sardar Ansari, Christopher Gillies, Brandon Cummings, Jonathan Motyka, Guan Wang, Kevin Ward and Hamid Ghanbari |
Classification of 12-Lead Electrocardiograms Using Residual Neural Networks and Transfer Learning |
Link (30MB) |
28 |
heartly-ai |
Philipp Sodmann and Marcus Vollmer |
ECG Segmentation using a Neural Network as the Basis for Detection of Cardiac Pathologies |
Link (42MB) |
29 |
Code Team |
Antonio H. Ribeiro, Daniel Gedon, Daniel Martins Teixeira, Manoel Horta Ribeiro, Antonio Luiz Ribeiro, Thomas B. Schön and Wagner Meira Jr |
Automatic 12-lead ECG Classification Using a Convolutional Network Ensemble |
Link (276KB) |
30 |
ISIBrno |
Petr Nejedly, Adam Ivora, Ivo Viscor, Josef Halamek, Pavel Jurak and Filip Plesinger |
Utilization of Residual CNN-GRU with Attention Mechanism for Classification of 12-lead ECG |
Link (248KB) |
31 |
Alba_W.O. |
Marek Żyliński and Gerard Cybulski |
Selected Features for Classification of 12-lead ECGs |
Link (58MB) |
32 |
AI Strollers |
Rohit Pardasani and Navchetan Awasthi |
Classification of 12 Lead ECG Signal Using 1D-CNN With Class Dependent Threshold |
Link (41MB) |
33 |
ECGLearner |
Yingjing Feng and Edward Vigmond |
Deep Multi-Label Multi-Instance Classification on 12-Lead ECG |
Link (413KB) |
34 |
Leicester-Fox |
Zheheng Jiang, Tiago Paggi de Almeida, Fernando Schlindwein, G. André Ng, Huiyu Zhou and Xin Li |
Diagnostic of Multiple Cardiac Disorders from 12-lead ECGs Using Graph Convolutional Network Based Multi-label Classification |
Link (39MB) |
35 |
deepzx987 |
Deepankar Nankani, Pallabi Saikia and Rashmi Dutta Baruah |
Automatic Concurrent Arrhythmia Classification Using Deep Residual Neural Networks |
Link (555KB) |
36 |
CVC |
Alexander William Wong, Weijie Sun, Sunil Vasu Kalmady, Padma Kaul and Abram Hindle |
Multilabel 12-Lead Electrocardiogram Classification Using Gradient Boosting Tree Ensemble |
Link (12MB) |
37 |
Cordi-Ak |
Paul Samuel Ignacio, Jay-Anne Bulauan and John Rick Manzanares |
A Topology Informed Random Forest Classifier for ECG Classification |
Link (891KB) |
38 |
MIndS |
Marwen Sallem, Adnen Saadaoui, Amina Ghrissi and Vicente Zarzoso |
Detection of Cardiac Arrhythmias From Varied Length Multichannel Electrocardiogram Recordings Using Deep Convolutional Neural Networks |
Link (47MB) |
39 |
easyG |
Martin Baumgartner, Dieter Hayn, Andreas Ziegl, Alphons Eggerth and Günter Schreier |
Multi-Stream Deep Neural Network for 12-Lead ECG Classification |
Link (399KB) |
40 |
BiSP Lab |
Matteo Bodini, Massimo W Rivolta and Roberto Sassi |
Classification of 12-lead ECG with an Ensemble Machine Learning Approach |
Link (340KB) |
41 |
Technion_AIMLAB |
David Assaraf, Jeremy Levy, Janmajay Singh, Armand Chocron and Joachim A. Behar |
Classification of 12-lead ECGs using digital biomarkers and representation learning |
Link (474KB) |