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Abstract

This article concerns the PhysioNet/Computing in Car-
diology Challenge 2020 which focused on building com-
putational methods to identify cardiac abnormalities from
12-lead ECGs. Our team, MCIRCC, utilized a large sec-
ondary dataset of 12-lead ECGs obtained from the Sec-
tion of Electrophysiology at the University of Michigan,
called the MUSE dataset, to pre-train multiple residual
neural networks that were later re-trained on the challenge
dataset. To do so, the diagnosis statements that existed in
our dataset were utilized to assign the same labels to our
ECGs as the challenge data. After parameter optimization,
we selected a subset of top performing models and created
an ensemble model that achieved a challenge validation
score of 0.616, and full test score of 0.141, placing us 27th

out of 41 teams in the official ranking.

1. Introduction

The electrocardiogram (ECG) is widely used for the di-
agnosis and monitoring of various cardiovascular diseases
and cardiac abnormalities [1]. However, manual interpre-
tation of ECG recordings is laborious and requires inspec-
tion by trained clinical personnel [2]. Machine learning
models may enable automatic classification of cardiac ab-
normalities and reduce interpretation time and healthcare
costs. In 2020, the PhysioNet and Computing in Cardiol-
ogy held a challenge to tackle this problem by improving
the performance of automatic interpretation algorithms for
12-Lead ECGs [3]1. Our challenge entry utilized a large
cohort of 12-lead ECGs from the University of Michigan
to pre-train a residual neural network and re-train it on the
challenge data to fine-tune the model, as described below.

1A preprint of this article can be found here: https://www.medr
xiv.org/content/10.1101/2020.08.11.20172601v1

2. Methods

2.1. MUSE Dataset

The approach that was utilized in this study involved
pre-training of residual networks using a large dataset of
12-lead ECGs obtained from the Section of Electrophysi-
ology at the University of Michigan. The dataset contained
1,277,298 records collected from 374,321 patients from
1990 to 2012 (with a few exceptions). Each recording was
10 seconds long and was sampled at 250Hz or 500Hz. All
ECGs were resampled at 250Hz before processing. Each
ECG was first analyzed and labeled by the MUSE software
at the time of recording. The automatically generated di-
agnoses were then reviewed and corrected (if necessary)
by a cardiologist as part of routine clinical care.

These labels existed in the dataset in a semi-structured
format, i.e., majority of the labels were broken down into
separate segments, each segment often representing a sin-
gle or a combination of arrhythmias and diagnoses. Our
team leveraged these labels and used prepositions, con-
junctions and adjectives such as and, with, likely and fre-
quent to further break down each segment. The resulting
segments were then filtered to only include phrases with at
least 50 instances. Each selected phrase was searched in
the Unified Medical Language System (UMLS) metathe-
saurus 2 to find the correposnding Concept Unique Iden-
tifiers (CUI). The CUIs with SNOMED CT (SCT) code
mappings were selected from the search results. If any
of the SCT codes existed in the list of the challenge la-
bels, they were selected; otherwise, the SCT graph was
traversed up (towards the root) to find matches between
the ancestors and the challenge labels. This allowed us to
match diagnoses in the MUSE and challenge datasets that
had different levels of granularity.

The resulting mapping between the diagnosis statements
from the MUSE dataset and the challenge labels was then
manually inspected and corrected. The final mapping was

2https://uts.nlm.nih.gov/home.html

https://www.medrxiv.org/content/10.1101/2020.08.11.20172601v1
https://www.medrxiv.org/content/10.1101/2020.08.11.20172601v1
https://uts.nlm.nih.gov/home.html


SCT Code Abbreviation Physionet
Count

MUSE
Count

270492004 IAVB 2394 76559
164889003 AF 3475 74352
164890007 AFL 314 10987
426627000 Brady 288 0
713427006 CRBBB1 683 64668
713426002 IRBBB 1611 33149
445118002 LAnFB 1806 32308
39732003 LAD 6086 110471

164909002 LBBB 1041 37631
251146004 LQRSV 556 57480
698252002 NSIVCB 997 6415
10370003 PR 299 28684

284470004 PAC2 1729 32789
427172004 PVC3 188 54083
164947007 LPR 340 0
111975006 LQT 1513 64728
164917005 QAb 1013 0
47665007 RAD 427 8554
59118001 RBBB1 2402 64668

427393009 SA 1240 62985
426177001 SB 2359 171613
426783006 NSR 20846 789961
427084000 STach 2402 140853
63593006 SVPB2 215 32789

164934002 TAb 4673 97719
59931005 TInv 1112 42
17338001 VPB3 365 54083

Table 1. The list of scored classes in the challenge
and their frequency in the challenge and MUSE datasets.
Classes with equal superscripts are considered identical in
the challenge. The full description of classes can be found
in [3].

used to label each ECG recording with the SCT codes that
exist in the challenge’s list of scored classes. The list of
classes and the number of instances in each dataset are
shown in Table 1. Some of the challenge classes were ab-
sent in the MUSE dataset, including Brady, LPR and QAb.

2.2. Classifying ECGs in the MUSE Dataset

2.2.1. Architecture

The MUSE ECGs and their labels were used to train
a residual neural networks (ResNet) with various architec-
tures. Figure 1 depicts the general structure of the network,
composed of an input layer, followed by a convolutional
layer and residual blocks. Each residual block was com-
posed of a max pooling layer followed by n convolutional
layers and a residual connection. The residual block was

Figure 1. The architecture of the ResNet models used in
this study. The models were composed of residual blocks
(the outer dashed box) which included a max pooling layer
(stride of 2 in the time dimension) follow by n convolu-
tional layers (inner dashed box). The residual block was
repeated m times. The other parameters that defined the
architecture were the number of filters in each convolu-
tional layer (k), the size of each filter (12× s; not shown),
dropout probability (p), and number and size of dense lay-
ers (z and f , respectively).

repeated m times, followed by a flattening layer, a dropout
layer with probably p and z dense layers of size f with
ReLU activation function. Finally, a dense layer with sig-
moid activation function was applied to the output binary
classification scores. All convolutional layers had k filters
of size 12 × s, with the first dimension spanning the 12
leads of ECG. Manual parameter selection was performed
by varying n from 2 to 6, m from 4 to 10, k from 16 to 64,
s from 3 to 11 with step size of 2, p from 0 to 0.5 with step
size of 0.25, z from 0 to 2 and f from 32 to 128.

2.2.2. Training and Testing

The MUSE data was randomly divided into three sub-
sets for training (60%), validation (20%) and testing
(20%). The training was conducted using Tensorflow 2.3.0
and its implementation of Keras. A batch size of 128, bi-
nary cross entropy loss function and Adam optimizer were
used. The training was performed for 100 epochs. The
challenge metric was calculated after each epoch and train-
ing was terminated early if the metric did not improve by
at least 0.01 for 3 consecutive epochs. The learning rate
was reduced by a factor of 0.1 (unless it dropped below
0.0001) if challenge metric did not improve for 2 consec-
utive epochs. A total of 166 networks with different archi-
tectures were trained and the eight top performing models
were selected and applied to the challenge data.



Figure 2. The area under the receiver operating character-
istics curve (AUROC) and area under the precision-recall
curve (AUPRC) for each class when the ensemble model
was applied to the challenge public dataset. The numbers
in the parentheses are the fraction of recordings with that
label.

2.3. Modeling the Challenge Data

2.3.1. Preprocessing

The ECGs from the six datasets provided by the chal-
lenge had different baseline levels and frequency composi-
tions. To equalize the histograms of these datasets, multi-
ple preprocessing steps were applied to each ECG record-
ing. First, all input ECGs were resampled at 250Hz. Then,
a double median filter was applied to the ECG leads to re-
move the baseline wonder, i.e., each ECG lead was first fil-
tered with a median filter of length 200ms, followed by an-
other median filter of length 600ms. The ECG leads were
also low-pass filtered using a 5th order Butterworth filter
and a cutoff frequency of 40Hz. To address the variable
length of input ECGs, we selected the first 10s of an ECG
record if it was longer than 10s; otherwise, the ECG was
zero padded to 10s.

2.3.2. Training and Testing

Each of the eight selected models that were trained on
the MUSE data was transferred and retrained on the chal-
lenge data. For each model, the last layer (dense layer with
27 nodes and sigmoid activation function) was removed
and replaced by a dropout layer (probably=0.5), followed
by dense layers with 128 and 32 neurons and ReLU ac-
tivation function, and a dense layer with 27 neurons and
sigmoid activation function. The six datasets in the chal-
lenge data were combined and then divided into separate
datasets for training (60%), validation (20%) and testing
(20%). The training parameters were similar to the ones
used for training on the MUSE dataset (see Section 2.2.2).

Figure 3. The modified multi-label confusion matrix as
calculated by the challenge evaluation function. The ma-
trix was formed by calculating the outer product of true
and predicated label vectors for each ECG, normalizing by
the total number of positive predictions and false negatives
for that ECG, and adding up the resulting matrices across
ECGs. Each row of the matrix was then divided by its sum.

None of the model weights were frozen; hence, full re-
training of the weights was allowed.

After training, the validation dataset was used to find
the best threshold for the class scores, by finding the value
that led to the highest challenge score. The threshold was
used to obtain binary classifications from the output of
each model and calculate the performance on the test. The
five top scoring models were then used to build an ensem-
ble model for classification of the challenge ECGs. The
class scores for the ensemble model were obtained by cal-
culating the median of the scores generated by individual
models, while the ensemble binary classifications were ob-
tained by calculating the mode of the individual binary la-
bels.

3. Results

The parameters for the best performing models on the
MUSE dataset are shown in Table 2. The models were
selected according to the challenge metric and achieved
scores ranging from 0.642 to 0.731. The selected models
were then modified and retrained on the challenge data,
as described in Section 2.3. The resulting ensemble model
was applied to the challenge public (training) data and area
under the receiver operating characteristics curve (AU-
ROC) and area under the precision-recall curve (AUPRC)
were calculated for each class. The results are illustrated in



Figure 4. The SCT codes for the classes that were scored in the challenge and their parent. An arrow indicates a parent-
child relationship. The nodes in red were scored in the challenge, while the ones in yellow were not and are shown to depict
the graph structure. The graph does not include all parent nodes for any given child.

Figures 2. The AUROCs ranged from 0.83 to 0.99, while
the AUPRCs ranged from 0.12 to 0.97. Figure 3 depicts the
normalized multi-class confusion matrix as defined in [3].
Some classes such as NSIVCB, QAb and TInv were fre-
quently misclassified, which is consistent with the results
in Figure 2. The model was then scored on the challenge
hidden dataset and achieved a score of 0.616 on the vali-
dation set and 0.141 on the full test set (Team MCIRCC),
ranking 27th among 41 teams in the official ranking.

4. Discussion and Conclusions

The results indicate high AUROC and AUPRC for some
classes (e.g., AF, CRBBB, PR, SB, NSR and STach),
while other classes achieved low levels of AUPRC (e.g.,
NSIVCB, QAb and TInv). Notably, the classes that had no
or very low representation in the MUSE dataset (Brady,
LPR, QAb, TInv), were among the ones with lowest
AUPRC.

We also attempted to include the patient demographics
(age and gender) as inputs to the dense layers of the chal-

Model Parameters Challenge
k s n m p z f Metric

1 16 7 2 8 0 0 0 0.689
2 16 7 3 8 0 0 0 0.7
3 32 7 2 6 0 0 0 0.642
4∗ 32 7 2 6 0 0 0 0.671
5∗ 32 7 2 7 0 0 0 0.687
6∗ 32 7 2 9 0 0 0 0.703
7∗ 32 7 3 9 0 0 0 0.731
8∗ 64 7 2 6 0 0 0 0.673

Table 2. The parameters for the eight top-scoring models
trained and tested on the MUSE dataset. ∗These models
achieved the highest scores after retraining on the public
challenge data and were included in the ensemble model.

lenge model. This did not improve the performance of
the classification models. In addition, we used the ResNet
models trained on the MUSE data (excluding the final sig-
moid layer) to extract features from the challenge ECGs.
These features were used as inputs to train XGBoost mod-
els to classify the recordings. The results were similar to
the ones reported above using dense layers. We also exper-
imented with freezing different layers of the MUSE mod-
els before retraining on the challenge data. The best results
were obtained when the entire model was retrained.

Some of the classes that were scored in this challenge
had parent-child relationship with each other, as shown in
Figure 4. However, the ECGs belonging to the child nodes
were not consistently labeled in relation to the parents.
Hence, this may have resulted in conflicting information
being presented to the models, potentially diminishing the
performance of the models.
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