
Classification of 12-lead ECGs Using Intra-Heartbeat Discrete-time Fourier
Transform and Inter-Heartbeat Attention

Ibrahim Hammoud, IV Ramakrishnan, Petar M. Djurić

Stony Brook University, Stony Brook, US

Abstract

In this work, we built a model to classify 12-lead ECGs
using attention for the PhysioNet/Computing in Cardiol-
ogy Challenge 2020. Since information about different
classification outcomes might be present only in specific
segments, we tune our feature representation to show the
frequency distribution shift as we move through time. This
is done by first representing the original signal as a spec-
trogram, which shows the signal’s frequency spectrum dur-
ing different time windows (heartbeats). The frequency
spectrum at each heartbeat is extracted using discrete-time
Fourier transform. The spectrogram is then inputted to a
bidirectional LSTM network where each heartbeat vector
represents a time step. The outputs of the bidirectional
LSTM network at each stage are then used as attention
vectors. The attention vectors are then multiplied with
the original signal window embeddings, which are used to
generate the final output. Our approach achieved a chal-
lenge validation score of 0.416 and a test score of 0.024
but were not ranked due to omissions in the submission
(team name: SBU_AI).

1. Introduction

Cardiovascular disease is estimated to be one of the
leading causes of death worldwide [1]. There are many
types of cardiovascular diseases resulting from different
underlying causes. To detect such causes and under-
stand the kind of intervention needed, the electrocardio-
gram (ECG) is an important tool used by healthcare pro-
fessionals to assess and diagnose abnormalities in the
cardiac electrical activity in patients [2, 3]. The Phy-
sioNet/Computing in Cardiology Challenge 2020 is or-
ganized to encourage automated, data-driven, and open-
source approaches for classifying different types of abnor-
malities from 12-lead ECGs [4,5]. In this paper, we discuss
the design and the results of the model we submitted to this
year’s challenge.

2. Methods

2.1. Data processing

We merged all the challenge datasets into one larger
dataset of 43,101 12-lead ECGs. For each data-point (a
single 12-lead ECG recording), we only process a 10 sec-
ond window due to computational limitations. We extract
the window from the middle of the signal to avoid poten-
tial noise at the beginning or end of the signal when possi-
ble. We also extract up to a maximum of 10 heartbeats per
data-point in the specified 10 second window. After that,
features were extracted for each data-point from the signal
and its accompanying header file. We group the features
into two main types: static and time-varying, as shown in
Table 1. Static features are characteristics of the patient
and the signal as a whole, while time-varying features are
characteristics calculated at the heartbeat level.

2.2. Peak detection

Since the dataset contains noisy ECG signals, we lever-
age the availability of 12-leads per ECG to improve the
quality of our peak detection pipeline. As shown in Al-
gorithm 1, we use a heuristic to select the lead ECG with
the most prominent peaks. This signal will be later used
to extract the actual timestamps of the peaks. The heuris-
tic calculates the ratio of the 5th highest gradient within
the 10-second window from each lead signal over the av-
erage of the bottom 50% of the positive gradients within
that window. Since we assume a minimum heart rate of
30 beats per minute, the 5th highest gradient is used as a
more conservative estimate of a peak gradient than taking
the average or the median of the top 5 gradients. Also,
taking the bottom 50% of the positive gradients as in the
denominator of line 5 of Algorithm 1 aims at capturing
the gradients from the noise while excluding the gradients
from the peaks and other characteristics of the signal.

After selecting the lead signal maximizing our signal
quality metric, we extract an approximate heart rate for the
signal before applying our peak detection algorithm. This
step is needed to adjust the minimum width between the



Feature name Type Source
Heart rate Static Signal
Standard deviation of inter-beat intervals Static Signal
Mean of difference intervals Static Signal
Standard deviation of difference intervals Static Signal
Age Static Header file
Sex Static Header file
Signal gain Static Header file
Per heartbeat discrete-time Fourier transform Time-varying Signal
Inter-beat interval duration Time-varying Signal

Table 1: Features used in our model. Time-varying features are calculated for each heartbeat. Static features are extracted
or calculated once for the whole signal before they are fed to our model.

Algorithm 1 : Get best lead signal index
Input: Lead signals e1, e2..., e12
Output: Index of signal used for peak detection.

1: procedure GETBESTLEADINDEX
2: for i = 1→ 12 do
3: dei ← DIFFERENCEOPERATOR(ei)
4:
5: qm← minimum of top 5 gradients in dei

average of the bottom 50% positive gradients in dei
6:
7: quality_measures.append(qm)
8: end for
9: Return argmin

i
quality_measures[i]

10: end procedure

peaks appropriately. To achieve this, we cross-correlate
the derivative of the lead signal with itself. Since we as-
sume the heart rates (per minute) fall within the range
(30, 240), we only search for peak values in the autocor-
relation plot corresponding to a signal period within that
range. Moreover, since the autocorrelation plot can have
multiple peaks, some of which are higher than the first
peak (corresponding to the true signal period or the actual
heart rate), we add a tolerance parameter in our algorithm
to accept the earliest peak if it is greater than or equal to
40% of the maximum peak in the specified range. We use
the earliest peak to calculate the period and thus the ap-
proximate heart rate of the signal.

After this step, and in order to identify peaks in the sig-
nal, we use a minimum distance between peaks of at least
40% of the distance corresponding to the given approxi-
mate heart rate (as long as it doesn’t correspond to a heart
rate higher than 240). We also use a prominence of 60%
of the 5th highest gradient within the 10-second window.
Values below this threshold are removed from the pool of
potential peaks. These two parameters allow for an ac-
ceptable range of variation in the amplitude and the period
of the derived heart rate signal. After that, we select our

peaks, given these two parameters. The parameters were
selected and tuned over a sample of 50 random heart rate
signals. We stopped the tuning after the overall peak detec-
tion pipeline was able to detect peaks correctly with more
than 99% accuracy. Figure 1 shows the distribution of the
heart rates across the whole challenge dataset after apply-
ing our peak detection pipeline.

Figure 1: Histogram showing the distribution of the heart
rates in the challenge training dataset after applying our
peak detection pipeline.

2.3. Model

2.3.1. Model architecture and loss function

After detecting the peaks in each signal, we extract the
distribution of the energy of the signal at each heartbeat
over frequencies between 0 and 10 Hz using the discrete-
time Fourier transform (DTFT). This information is con-
catenated with the patient context features. We multiply
these vectors with an embedding matrix to generate a mul-
tivariate time-series represented as embedding vectors. Af-
ter that, we feed the vector embeddings into a bidirectional
Long Short Term Memory (LSTM) network. We apply an



12 lead signals

DTFT
(Per beat)

12 lead signals
(segmented)

12 lead signals
(segmented)

1st
Beat

2nd
Beat

Nth
Beat

Feature vectors
(per heartbeat)

...

Select best
quality lead
signal

Peak
detection

1st
Beat

2nd
Beat

Nth
Beat

...

Heartbeat
embeddings

1st
Beat

2nd
Beat

Nth
Beat

...

LSTM outputAttention
output

Embedding matrix
Bidirectional LSTM

Attention

Feed forward
network

Multi-label
output

8

7

6

5

4

3
2

1 Static features
(age, heart rate...)

Figure 2: Proposed model architecture. We first detect the peaks in the given signals and then apply a discrete-time Fourier
transform at the heartbeat level (1-6). We then generate per heartbeat input feature vectors, which are then concatenated
with the static features before they are multiplied by the embedding matrix to generate heartbeat embedding vectors (7-9).
The embedding vectors are fed into a bidirectional LSTM (10). The outputs of the bidirectional LSTM and the embedding
vectors are fed into an attention mechanism whose fixed-length output is inputted to a final feed-forward network that
outputs class probabilities after applying the sigmoid function for each class output (multi-label classification) (11-15).

attention mechanism [6] to the embedding vectors using
the outputs of the bidirectional LSTM as in [7]. The result-
ing output vector from the attention layer is then fed into
a final linear layer. Since we have a multi-label prediction
task, we apply a sigmoid operator to the final layer’s output
to generate a probability score for each class output. The
model was then optimized using the binary cross-entropy
loss averaged over all the 24 class outputs. The overall
model architecture is shown in Figure 2.

2.3.2. Model hyper-parameters and tuning

We fix the input embedding dimension (LSTM input di-
mension) to 512, the LSTM hidden dimension and all sub-
sequent hidden layer dimensions to 256, the batch size to
64, and the number of training epochs to 10.

As for other learning parameters, we tune the learning
rate, gradient clip norm, L1 and L2 regularization coeffi-
cients (λ1 and λ2), and dropout rate. We tune the model
hyper-parameters using the Bayesian optimization imple-
mentation from the Hyperopt python package [8]. We use
40 total trials after separating the training dataset into 70%
training and 30% validation to tune these parameters. The
parameters and their ranges are shown in Table 2. We then
selected the parameters from the trial giving the best per-
formance on the validation set. After that, the model was

retrained on the full dataset and submitted to the challenge
for final evaluation after tuning the classification thresh-
olds.

Parameter Range Range type
Learning rate [−10,−5] Log uniform
Gradient clip norm [0, 10] Uniform
L1 lambda [-10, 2] Log uniform
L2 lambda [-10, 2] Log uniform
Dropout [0.05, 0.1, 0.15, 0.2, Discrete

0.3, 0.4, 0.5]

Table 2: Search spaces for the model hyper-parameters.

2.3.3. Model thresholds tuning

After training and selecting a model that minimizes the
loss and generalizes well to the validation set, we need to
choose thresholds for each class in a way that optimizes
for the challenge metric. Usually, this is an easier task
in binary classification tasks using a linear time algorithm
that sweeps all possible thresholds and selects the optimal
one. In the given challenge metric, however, this task is
more challenging for two main reasons:

1- The threshold of each class affects the scoring of all



other classes in different ways, even if the thresholds
of all those other classes are held constant.

2- Grid search based threshold optimization is in-
tractable given the number of classes (24).

Given this, we optimize the thresholds using Bayesian
optimization. We use 200 trials, and we select the thresh-
olds that maximize the challenge scoring function on the
training set. We also apply an additional heuristic to accel-
erate the threshold search. We limit the threshold search to
be within the 95 middle percentiles of each positive class’s
model probability output distribution across the training
set. The reasoning behind this range is that higher values
mean omitting that class entirely (all negative predictions).
On the other hand, a value below that range might corre-
spond to outliers whose scores are very close to 0. Limiting
our search space to this narrower space increased conver-
gence speed compared to searching the whole range (0 to
1).

3. Results

Table 3 shows the final results of our submitted model.
We used one of the ten submissions in the official phase of
the challenge. The submitted model was not ranked due to
omissions in the submission (team name: SBU_AI). Table
4 shows the results on each of the final test set databases.

Dataset Score

Validation 0.416
Full test set 0.024

Table 3: Results on the chal-
lenge validation and full test
set.

Test set database Score

database 1 0.513
database 2 0.016
database 2 -0.028

Table 4: Results on the
challenge full test set by
database.

4. Discussion and Conclusions

In this work we designed a model to classify 12-lead
ECGs using attention and DTFT. Tables 3 and 4 show that
the model failed to generalize across different databases.
This can be attributed to multiple design choices such as
cross-validating after aggregating all data-points instead of
cross-validating at a database level, limiting the maximum
duration to 10 seconds per signal, and following an out-
come agnostic approach. Addressing these limitations will
be the subject of our future work. We also intend to an-
alyze our model’s attention weights to give more insight
about each heartbeat’s contribution to the final probability
score similar to the approach followed in [7].

Acknowledgments

This work was supported by NSF Awards: 1805076,
1936027 and NIH Awards: R01EY030085, R01HD097188.

References

[1] Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Call-
away CW, Carson AP, Chamberlain AM, Chang AR, Cheng
S, Das SR, et al. Heart Disease and Stroke Statistics – 2019
Update: A Report From the American Heart Association.
Circulation 2019;.

[2] Kligfield P, Gettes LS, Bailey JJ, Childers R, Deal BJ, Han-
cock EW, Van Herpen G, Kors JA, Macfarlane P, Mirvis DM,
et al. Recommendations for the Standardization and Inter-
pretation of the Electrocardiogram Part I: The Electrocardio-
gram and Its Technology A Scientific Statement From the
American Heart Association Electrocardiography and Ar-
rhythmias Committee, Council on Clinical Cardiology; the
American College of Cardiology Foundation; and the Heart
Rhythm Society Endorsed by the International Society for
Computerized Electrocardiology. Journal of the American
College of Cardiology 2007;49(10):1109–1127.

[3] Kligfield P. The Centennial of the Einthoven Electrocardio-
gram. Journal of Electrocardiology 2002;35(4):123–129.

[4] Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov
PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE.
PhysioBank, PhysioToolkit, and PhysioNet: Components of
a New Research Resource for Complex Physiologic Signals.
Circulation 2000;101(23):e215–e220.

[5] Perez Alday EA, Gu A, Shah A, Robichaux C, Wong AKI,
Liu C, Liu F, Rad BA, Elola A, Seyedi S, Li Q, Sharma A,
Clifford GD, Reyna MA. Classification of 12-lead ECGs: the
PhysioNet/Computing in Cardiology Challenge 2020. Phys-
iological Measurement 2020;.

[6] Bahdanau D, Cho K, Bengio Y. Neural Machine Translation
by Jointly Learning to Align and Translate. arXiv preprint
arXiv14090473 2014;.

[7] Choi E, Bahadori MT, Sun J, Kulas J, Schuetz A, Stewart
W. Retain: An Interpretable Predictive Model for Health-
care using Reverse Time Attention Mechanism. In Advances
in Neural Information Processing Systems 29. Curran Asso-
ciates, Inc., 2016; 3504–3512.

[8] Bergstra J, Yamins D, Cox D. Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Di-
mensions for Vision Architectures. In International Confer-
ence on Machine Learning. 2013; 115–123.

Address for correspondence:

Ibrahim Hammoud
350 Circle Rd, Stony Brook, NY, United States
ihammoud@cs.stonybrook.edu


	Introduction
	Methods
	Data processing
	Peak detection
	Model
	Model architecture and loss function
	Model hyper-parameters and tuning
	Model thresholds tuning


	Results
	Discussion and Conclusions

