
A Topology Informed Random Forest Classifier for ECG Classification

Paul Samuel Ignacio, Jay-Anne Bulauan, John Rick Manzanares

University of the Philippines Baguio, Baguio City, Philippines

Abstract

This paper accompanies Team Cordi-Ak’s entry to
the classification of 12-lead ECGs for the Phys-
ioNet/Computing in Cardiology Challenge 2020. Our
approach leverages mathematically computable topolog-
ical signatures of 12-lead ECGs as proxy for features in-
formed by medical expertise to train a two-level random
forest model in a multi-class classification task. We view
ECGs as multivariate time series data and convert differ-
ent segments and groupings of leads to point cloud em-
beddings. This stores both local and global structures of
ECGs, and encodes periodic information as attractor cy-
cles in high-dimensional space. We then employ topologi-
cal data analysis on these embeddings to extract topologi-
cal features based on different summaries available in the
literature. We supplement these features with demographic
data and statistical moments of RR intervals based on the
Pan-Tompkins algorithm for each lead to train the classi-
fier. Our classifier achieved a challenge validation score
of 0.304, and a final score of -0.113 on the full hidden test
data, placing us 37th out of 41 officially ranked teams that
participated in this year’s Challenge.

1. Introduction

Cardiovascular diseases lead the causes of death world-
wide [1]. Early and accurate diagnosis of cardiac condi-
tions are prerequisite to the development of an appropriate
and personalized treatment program [2]. This in turn in-
creases the chances of survivability or successful manage-
ment of the specific cardiac condition. The diagnosis of
cardiac conditions relies on the rigorous and manual anal-
ysis of a patient’s 12-lead electrocardiogram reading as
different cardiovascular diseases have different causes and
require different interventions [3]. Evidently, this is time-
consuming and requires interpretation provided by highly
skilled personnel with similarly high degree of training.

The PhysioNet/CinC Challenge 2020 focused on auto-
mated, open-source approaches for classifying cardiac ab-
normalities from 12-lead ECGs [4, 5]. Our entry to this
challenge leverages mathematically computable topologi-
cal signatures of 12-lead ECGs as proxy for features in-

formed by medical expertise to train a random forest model
in a multi-class classification task. As has been shown for
detecting Atrial Fibrillation using single-lead ECGs [6],
this approach verifies the existence and viability of signal
in the topology of ECGs for improving diagnosis of car-
diac conditions. Upscaling this to the use of all 12 leads of
a standard ECG to diagnose multiple heart conditions im-
proves accessibility to automated diagnostics by reducing
expert-dependent input in feature extraction.

2. Methods

We use a standard pipeline for examining time series
data using topological data analysis. We first generate
point cloud embeddings from the ECG data, then extract
topology-based features using tools from algebraic topol-
ogy, and finally employ these features to train a two-level
random forest classifier. Figure 1 illustrates this pipeline.

Figure 1. Pipeline. We convert time series data to point
cloud embeddings from which topological signatures can
be extracted via persistent homology, and used for machine
learning.

2.1. Point Cloud Embedding

To generate point cloud embeddings, we consider each
ECG reading as a sequence of multi-dimensional vectors
where leads correspond to coordinates. Each time-slice of
a 12-lead ECG represents a vector in high-dimensional Eu-
clidean space, and each periodic signal in an ECG is em-
bedded as an attractor cycle.



Figure 2. Each lead grouping from an ECG segment is
sampled, then mapped to a point cloud whose topological
features are computed and recorded as a barcode.

We unwrap characteristics of ECG readings by con-
sidering point cloud embeddings generated from different
groupings of lead segments. The idea is to record charac-
teristics that become more pronounced after filtering out
excessive or redundant information from multiple leads.
We consider three segments consisting of 1800 time points
respectively from the beginning, middle, and ending por-
tions of the ECG from which different lead groupings will
be extracted to generate point clouds. See Figure 2. It is
worth noting that due to the variable lengths in the ECG
readings, the middle and end segments across ECG read-
ings may refer to different time points. However, we argue
that because of the overall periodic behavior of the cardiac
cycle, and since the length of the segments being consid-
ered spans multiple periods, the point cloud embeddings
generated from the captured middle and end segments pro-
vide good representations of the topology of the corre-
sponding portions of the ECG readings. All things con-
sidered, the inclusion of the middle and end segments pro-
vides additional topological information about the ECGs.

Within each segment, we then consider 7 different
groupings of leads to generate several point cloud embed-
dings. To reduce computational costs, we represent each
group of leads by 300 equally spaced time slices within
the segments. The first grouping uses all 12 leads in a
standard ECG and represents the overall topology of the
ECG segment. The other groupings are constructed based
on two criteria: i. groups must collectively span all 12
leads; ii. some groups may represent collections of leads
described in the literature as references for diagnosing spe-
cific cardiac conditions belonging to the original 8 classes
identified in the unofficial phase of the challenge. Table 1
provides the different lead groupings considered in every
segment.

1 2 3 4 5 6 7 8 9 10 11 12
1 4 4 4 4 4 4 4 4 4 4 4 4
2 4 4 4
3 4 4 4 4
4 4 4 4 4 4
5 4 4 4 4
6 4 4 4 4
7 4 4 4 4

Table 1. Leads are grouped either to span all 12 leads of an
ECG, or to represent collections of leads used in practice
as references for diagnosing specific cardiac conditions.

2.2. Feature Extraction

We examine each point cloud embedding using topo-
logical data analysis, particularly via persistent homology
[7]. A quick introduction to this approach with accompa-
nying similar application is found in [6]. Succinctly, we in-
duce a distance-parameterized monotonic sequence of ab-
stract simplicial complexes revealing a multi-scale record
of the evolving topological signatures of the underlying
point cloud. In this application, these signatures pertain to
connectivity and periodicity information about the corre-
sponding ECG segment. We track topological information
that persist across different parameter values and record
it as a collection of bars, called persistence barcodes. In
this work, we are only concerned with persistent homolog-
ical features from dimensions 0 and 1, and use the python
package RIPSER [8] to compute the barcodes. We de-
rive statistical features from persistence barcodes and other
persistence-based summaries such as landscapes [9], and
entropy [10]. We summarize these below, where x refers to
the average, SD the standard deviation, Sk the skewness,
and Kurt the kurtosis for the collection of values.
1. Dimension 0 and 1 Barcode Statistics.
(a) x, SD, Sk, and Kurt for dimension 0 persistence,

birth and death time, and dimension 1 persistence.
(b) Sums of persistence in dimensions 0 and 1.

2. Dimension 0 and 1 Truncated Barcode Statistics where
the most persistent bar is removed.
(a) x, SD, Sk, and Kurt for dimension 0 persistence,

birth and death time, and dimension 1 persistence.
(b) Sum of dimension 1 persistence.

3. Dimension 1 Persistence Landscape Statistics.
(a) Number of layers in the landscapes.
(b) x, SD, Sk, and Kurt for the number of peaks and

number of valleys per layer, and percentage of area under
a layer relative to that above it.
4. Dimension 0 and 1 persistence entropy.

This feature set is extracted from each point cloud gen-
erated from the lead groupings in every segment. Finally,
we include demographic data and statistical moments of
RR intervals for each lead extracted using the algorithm
supplied by the Challenge organizers [11]. A total of 1238
features are considered per ECG.



2.3. Classifier Training

We use a two-level random forest classifier. A first level
random forest is trained to classify between scored and un-
scored classes based on the Challenge-provided lists. The
second level uses two random forests, one each for scored
and unscored classes. All forests have a maximum depth
of 20 and use the square root function for the maximum
number of features.

We scan the labels of each ECG in the training set and
determine if at least one label belongs to the scored classes.
In such case, the first label of an ECG that belongs to the
scored classes is taken as its assigned label, and the ECG is
included in the training subset for the scored classes. Oth-
erwise, it is placed in the training subset for the unscored
classes. Using a binary list, we keep track of which ECGs
belong to either scored and unscored classes, and use this
list as training labels for the first level random forest clas-
sifier. We emphasize that across all levels, we only use the
features described in the previous section for training. Fea-
tures are ranked by importance using Scikit-learn’s [12]
built-in functions and a shortlist is used for re-training.

Each second-level forest is trained using the appropriate
subset, and features are again ranked and shortlisted for
re-training. Table 2 shows the non-optimized parameter
values for each random forest. We note that parameters
for the random forest that classifies the unscored classes
have smaller values to control computational costs due to
significantly larger number of unscored classes.

RF Level # Features # Trees
1 400 1000

2-1 400 600
2-2 200 200

Table 2. Parameters for Random Forest Training.

3. Results

Table 3 reports the scores of our classifier on a 3-fold
cross validation over the full training set.

Fold AUPRC AUROC Acc. F1 Challenge
1 0.319 0.845 0.208 0.257 0.220
2 0.327 0.848 0.214 0.256 0.219
3 0.321 0.845 0.205 0.253 0.217

Average 0.322 0.846 0.209 0.255 0.219
Std. Dev. 0.004 0.002 0.005 0.002 0.002

Table 3. 3-fold cross validation scores on the training set.

Figure 3 shows the metric scores by class on the valida-
tion dataset as provided by the Challenge organizers, and
the test scores across different databases are reported in
Figure 4.
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Figure 3. Scores by class on the validation dataset.
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Figure 4. Classifier scores across different databases.

Our final ranking (Cordi-Ak) is 37th out of 41 officially
ranked teams that participated in this year’s Challenge.

4. Discussions

We employed a random forest classifier as we believe
it mimics what is practiced at large in the community of
experts in coming up with a collective and community-
accepted diagnosis of cardiac conditions. However, as the
significant portion of our work is about extracting math-
ematically computable topological features from 12-lead
ECGs, other machine or deep learning algorithms may be
trained using these features to develop new models.

Computational obstructions, some leading to the even-
tual abortion of some of our Challenge submissions,
abound in our approach due to limited available technol-
ogy in extracting topological information from point cloud
data. Our response to this challenge was a two-fold reduc-



tion of computational costs by first segmenting the ECGs
instead of using the entire recordings, then sampling within
these segments. It must be noted however that this choice
in turn ignores a large amount of information that could
significantly affect the method.

Our moderately high AUROC scores across all valida-
tions and tests suggest that the topology-informed classi-
fier performs relatively well in discriminating condition-
positive from condition-negative ECGs, that is, the clas-
sifier is more likely to produce correct positive diagnosis
than to classify an ECG as having a condition that it has
not. This reveals that our topology-informed classifier is
indeed able to capture crucial information for correct posi-
tive diagnosis. However, we see that the classifier is prone
to make incorrect negative diagnosis as evidenced by the
significantly smaller F1 scores. To put the Challenge score
on the validation dataset in perspective of our underlying
objective, the Challenge-released baseline random forest
classifier, trained on features similar to our non-topological
features, received a validation Challenge score of 0.076.
Finally, while the classifier performed consistently on the
first two test databases, particularly on the positive Chal-
lenge scores, the reduced performance and larger negative
Challenge score on the third database, which is matched to
the second database in terms of demographics and preva-
lence of classes, reveal some generalizability concerns for
the trained classifier. This trend is inherited in the full test
set as the third database dominates the full test set consti-
tution, and is not unique to our classifier.

5. Conclusion and Future Plans

We examined whether mathematically computable topo-
logical information embedded within 12-lead ECG read-
ings contain signal that can be tapped to improve cardiac
diagnosis. This is important as it improves accessibility
to automated diagnostics by reducing expert-dependent in-
put in feature extraction. Despite the computational ob-
structions we encountered that limited our opportunities
to properly test and tune our model, we find positive ev-
idences to support this hypothesis such as the ability of
the topology-based features to train a classifier model with
high true positive rates, and the marked positive difference
in the performance of such classifier relative to baseline
models trained on features similar to our non-topological
features. On the other hand, we also learned about spe-
cific issues on generalizability and other weaknesses of the
topology-informed classifier. We plan to further investi-
gate these in the next PhysioNet/CinC Challenge.
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