
Classification of Cardiac Abnormalities From ECG Signals Using SE-ResNet

Zhaowei Zhu1*, Han Wang2*, Tingting Zhao1, Yangming Guo1, Zhuoyang Xu1, Zhuo Liu1, Siqi Liu3,
Xiang Lan2, Xingzhi Sun1#, Mengling Feng2#

1Ping An Technology, Beijing, China
2National University of Singapore, National University Health System, Singapore

3NUS Graduate School for Integrative Sciences & Engineering, Singapore

Abstract

In PhysioNet/Computing in Cardiology Challenge 2020,
we developed an ensembled model based on SE-ResNet
to classify cardiac abnormalities from 12-lead electrocar-
diogram (ECG) signals. We employed two residual neu-
ral network modules with squeeze-and-excitation blocks to
learn from the first 10-second and 30-second segments of
the signals. We used external open-source data for valida-
tion and fine-tuning during the model development phase.
We designed a multi-label loss to emphasize the impact of
wrong predictions during training. We built a rule-based
bradycardia model based on clinical knowledge to correct
the output. All these efforts helped us to achieve a robust
classification performance. Our final model achieved a
challenge validation score of 0.682 and a full test score of
0.514, placing our team HeartBeats 3rd out of 41 in the
official ranking. We believed that our model has a great
potential to be applied in the actual clinical practice, and
planned to further extend the research after the challenge.

1. Introduction

Electrocardiogram (ECG) examines the physiological
activities of the heart and helps the diagnosis of many car-
diovascular abnormalities [1]. Diagnosis with the ECG
signal requires the clinician to careful examine and identify
the inter-beat and intra-beat patterns. The process can be
both time-consuming and error-prone [2]. Thus, a quick
and accurate algorithm for automatic ECG pattern classifi-
cation is always desired. In the PhysioNet/Computing in
Cardiology Challenge 2020, participants were to develop a
model to automatically identify the cardiac abnormalities
present in 12-lead ECG recordings [3]. In this paper, we
will describe our approaches to tackle the challenge.
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2. Methods

The overall system design is shown in Figure 1 and will
be elaborated below.

2.1. Datasets & Labelling

The public challenge data consist of 43,101 12-lead ECG
signals from 6 different datasets, namely CPSC, CPSC2,
PTB, PTB-XL, Georgia and INCART. The sampling fre-
quency of the signals varies from 257 Hz to 1000 Hz, and
the length of the signals varies from 6 seconds to 30 min-
utes. There are 111 labeled abnormalities in total, of which
27 are included in the final scoring metrics. From these
data, we created our offline training set and test set via the
following approaches.

Processing original data. INCART dataset was ex-
cluded from our training data since it has only 74 30-
minutes records with a sampling frequency of 257 Hz and is
significantly different from other datasets. All data without
a label in the 27 scored classes were excluded as well. PTB
dataset was downsampled from 1000 Hz to 500 Hz to make
the sampling frequency of all training data unified. Since
lead III, aVR, aVL and aVF are linearly dependent on other
leads and can be calculated based on Einthoven’s Law [4]
and Goldberger’s equations [5] , these 4 leads were also
excluded. In the rest of the data, we randomly split 80%
as the training set and 20% as the offline test set. The final
sizes of the training set and test set are 30,172 and 7,544
respectively.

Relabelling CPSC data. CPSC dataset was relabeled
due to the fact that the labels cover only 9 classes and
the class distribution is significantly different from other
datasets. A baseline model was first trained on the original
training set, and used for inference on CPSC dataset. For
each signal, among all the classes with inference output
probability higher than 0.8, the classes that were not in the
original 9 classes but in the 27 scored classes were added
as a new label.

To check the validity of our relabelling strategy, out of all



Figure 1. Illustration of the system design.

the relabelled data with inference output probability higher
than 0.95, 11 records were reviewed by a clinician. The
feedback that most of the new labels were valid testified
that CPSC dataset has missing labels.

Including external dataset. In order to help validate
the generalizability of our model, an external dataset from
Hefei Hi-tech Cup ECG Intelligent Competition [6] (Hefei
dataset in short) was introduced. Hefei dataset consists
of 40,000 records of 8-lead ECG signals with a sampling
frequency of 500 Hz and length of 10 seconds. Out of
all the records, 6,500 records with labels in the 27 scored
classes were randomly selected and formed an external test
set.

2.2. Data Preprocessing

To better prepare the data for model training, we adopted
the following data preprocessing techniques.

Truncating & padding. For the baseline model, all
input signals were fixed at 30 seconds in length. This was
done by truncating the part exceeding the first 30 seconds
for longer signals and padding the shorter signals with zero.
For the other ensembled model, the input length was fixed
at 10 seconds with the same preprocessing method.

Wavelet denoising. To reduce the noise in ECG sig-
nals, biorthogonal wavelet transformation was applied. The
numbers of vanishing moments for the decomposition and
reconstruction filters were 2 and 6 respectively. The level
of refinement was set to be 8.

2.3. System Architecture

SE-ResNet. SE-ResNet [7] was used as our main model
for the task. Introducing Squeeze-and-Excitation (SE) block
into the ResNet [8] structure allows the model to adaptively
adjust the weights of each channel in the feature maps. In
this way, more important channels could be given higher
weights, leading to a better prediction performance. Our
baseline model was an SE-ResNet model with the input
length of 30 seconds. To minimize the effect of padding on
the shorter signals, another SE-ResNet model was trained
with the input length of 10 seconds and ensembled with the
baseline model. The structure of our SE-ResNet model is
shown in Figure 2.

Sign Loss. A significant issue observed in our data was
class imbalance, which resulted in predictions biased to-
wards the majority class. To mitigate this issue, we designed
a multi-label sign loss for our model training. The loss is
defined as follows:

sign(p) =

{
y − 2py + p2 , |y − p| < 0.5
1 , |y − p| ≥ 0.5

Loss(p, y) = sign(p)× BinaryCrossEntropyLoss(p, y)

For the correctly classified labels, a coefficient smaller
than 1 was multiplied to the default binary cross entropy
loss. By doing so, the accumulated loss from the large
number of true negative labels became smaller, and the loss
from the mis-classified labels became more prominent.



Figure 2. Architecture of the SE-ResNet model.

Rule-based model. The baseline model did not perform
well enough for certain classes while there were relatively
clear clinical rules to follow. One of such classes is brady-
cardia, which indicates the heart rate is slower than 1 beats
per second, or the R-R interval between two heartbeats is
longer than 1 second. To detect the R-R intervals, Pan &
Tompkins algorithm [9] was used to detect the R-peaks
on lead I, and R-R intervals could be easily calculated.
The pseudocode of the rule-based model for bradycardia is
shown in Algorithm 1.

Algorithm 1: Rule-based bradycardia classifier
Input: List of R-R intervals
Output: Classification of bradycardia
brady beats = 0;
foreach R-R interval

if 1s ≤ length of interval ≤ 1.6s
brady beats += 1

if brady beats / # of R-R intervals ≥ 0.5
return True

else
return False

However, the final bradycardia prediction of the system
was not purely decided by the rule-based model. A very
high recall and low precision were observed when doing so,
and this could be attributed to the sub-optimal label quality
of the datasets. Therefore, the prediction of rule-based
model was only taken when its output is negative. The
pseudocode for the final bradycardia prediction is shown in

Algorithm 2.

Algorithm 2: Final bradycardia prediction
Input: Prediction from ensembled model

Prediction from rule-based model
Output: Final classification of bradycardia
if Prediction from rule-based model is False

return False
else

return Prediction from ensembled model

SNR Postprocessing. Signals that were predicted to be
negative for all classes were revised to be positive for the
default normal class, sinus rhythm (SNR).

2.4. Training Setup

The ensembled model was trained for 19 epoches with a
batch size of 16 on a machine with 117 GB RAM, 4-core
CPU and one NVIDIA V100 GPU. The model parameters
were optimized with the Adam optimizer [10]. The learning
rate during training was set as 0.001, and rescheduled to
0.0001 at the 13th epoch. The optimal binarization threshold
was found to be 0.36 on the offline test set.

3. Results

Table 1 shows the locally evaluated challenge scores on a)
the test set divided from the official offline data, b) the test
set from Hefei dataset and c) the full training set consisting
of both offline training and test set.

20% test Hefei test Full training
1) Model15000 0.674 0.300 0.805
2) Model5000 0.674 0.236 0.782
3) Model1) + 2) 0.680 0.305 0.883
4) Model3) + Rule 0.683 0.319 0.885

Table 1. Model performance on offline datasets. SNR
postprocessing were done on all four models.

The 4th model scored highest in all three sets, hence was
chosen as our best entry, and obtained challenge scores of
0.682 on the online validation data and 0.514 on the online
test data.

4. Discussion

From the results above, our ensembled approach demon-
strated its ability to classify the cardiac abnormalities de-
spite of the challenges presented, e.g. noise in the signals
and labels. The offline score on the 20% test set is 0.683,
only differed the online score by 0.001, suggesting good
generalizability and little overfitting.



During the challenge, we also experimented with several
other ideas. One idea that we would like to share and
hopefully inspire further explorations is the segmentation
of abnormal heartbeats.

Abnormal heartbeats segmentation via 1D U-net.
Some of the cardiac abnormalities are associated with indi-
vidual heartbeats. If the model can learn to recognize these
individual heartbeats that directly lead to the abnormality
label, it may perform and generalize better, especially when
the abnormal heartbeats are rare and sparse over the signal
span.

Based on the preliminary analysis of the prediction re-
sults and advice from a clinician, we selected data with pre-
mature ventricular complex (PVC) labels to annotate. The
raw lead-II signals were transformed into images by plot-
ting on a grid background. The images were then imported
into Colabeler, and we manually annotated all suspected
PVC heartbeats by specifying their x-axis spans. Lastly, we
translated the x-axis spans back to the actual locations on
the signals. Due to time constraint, only 160 PVC data were
annotated and used for subsequent training. We adapted
U-net [11], a popular segmentation model in medical imag-
ing to segment the PVC heartbeats. The 160 annotated
PVC records were used as positive samples and 500 ran-
domly selected records without PVC label were used as
negative samples to train the model. The PVC classification
is considered as positive if there is any positive PVC signal
output. When we incorporated U-net into our system, the
PVC predictions were solely determined by U-net.

Our experiments showed that incorporating U-net in-
creased the Fbeta and Gbeta measures in the evaluation met-
rics, but no challenge score improvement was observed.
Due to the additional training time required, we did not
incorporate U-net in our final system.

5. Conclusions

In this paper, we have described our approach used in the
PhysioNet/Computing in Cardiology Challenge 2020. Our
ensembled SE-ResNet model is able to classify 27 cardiac
abnormalities on 12-lead ECG signals with a challenge
validation score of 0.682 and a full test score of 0.514.
Since the system is trained on real-life datasets, we believe
that it has a great potential in the actual clinical practice.
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