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Abstract

The objective of this study was to classify 27 cardiac
abnormalities based on a data set of 43101 ECG record-
ings. A hybrid model combining a rule-based algorithm
with different deep learning architectures was developed.

We compared two different Convolutional Neural Net-
works, a Fully Convolutional Neural Network and an En-
coder Network, a combination of both, and with the addi-
tion of another neural network using age and gender as in-
put. Two of these combinations were finally combined with
a rule-based model using derived ECG features. The per-
formance of the models was evaluated on validation data
during model development using hold-out validation. Fi-
nally, the models were deployed to a Docker image, trained
on the provided development data, and tested on the Chal-
lenge validation set. The model that performed best on the
Challenge validation set was then deployed and tested on
the full Challenge test set. The performance was evaluated
based on a particular Challenge score.

Our team, TeamUIO, achieved a Challenge validation
score of 0.377, and a full test score of 0.206 for our best
model. The score on the full test set placed us at 20th out
of 41 teams in the official ranking.

1. Introduction

The ECG reflects the electrical activity of the heart,
and the interpretation of this recording can reveal numer-
ous pathologies of the heart. An ECG is recorded using
an electrocardiograph, where modern clinical devices usu-
ally contain automatic interpretation software that inter-
prets the ECGs directly after recording. Although auto-
matic ECG interpretation started in the 1950s, there are
still some limitations [1, 2]. Because of the errors done by
the automatic interpretation software, doctors have to read
over the ECGs [3]. This is time-consuming for the doctors
and requires a high degree of expertise [4]. There is clearly
a need for better ECG interpretation algorithms.

Recent years have shown a rapid improvement in the

field of machine learning. A sub-field of machine learning
is called deep learning, where more complex architectures
of neural networks are better able to scale with the amount
of data in terms of performance. This type of machine
learning has shown promising performance in many fields
including medicine, and in this study, we have explored the
usefulness of deep learning in classifying 12-lead ECGs.

As a starting point for our model architecture, we chose
to use the two best performing Convolutional Neural Net-
works (CNN) used on ECG data in Fawaz HI et al 2019
[5]. They reported that Fully Convolutional Neural Net-
works (FCN) outperformed eight other CNN architectures
compared. We also wanted to test the second-best architec-
ture from their study which was an Encoder network. Fi-
nally, we assessed the integration of a rule-based algorithm
within these models to test the performance of a CNN and
rule-based hybrid classifier.

This study is a part of the PhysioNet/Computing in Car-
diology (CinC) Challenge 2020, where the aim was to de-
velop an automated interpretation algorithm for the iden-
tification of multiple clinical diagnoses from 12-lead ECG
recordings.

2. Methods

2.1. Data

To train the CNN models a data set containing 43.101
ECG recordings with corresponding information files de-
scribing the recording, patient attributes, and the diagno-
sis was used [6, 7]. The recording lengths varied across
the different ECG signals, 83.4% were 5000 samples long.
98.5% of the recordings were sampled at a frequency of
500Hz, 1.3% signals sampled at 1kHz and 0.2% signals
sampled at 257Hz.

2.2. Preprocessing

According to the goal of this Challenge, we aimed to
classify 27 of the 111 diagnoses [6]. The 27 labels to
classify were One-Hot encoded, with each diagnosis rep-



resented as a bit in a 27-bit long array. All recordings were
padded and truncated to a signal length of 5000 samples.
Padding and truncation were done by removing any parts
longer than 5000 samples and adding a tail of 5000 − n
zeros to any recording of length n < 5000.

2.3. CNN architectures

As a starting point for classifying the ECG-signals, we
employed FCN and Encoder types of CNN models as de-
scribed in Fawaz HI et al 2019 [5]. Two models were tested
without any modifications to the architecture other than
changing the input and output layers to fit our input data
and output classes. All output layers of each model used a
Sigmoid activation function.

To make use of the provided age and gender data, a sim-
pler neural network model with 2 inputs, one hidden layer
of 50 units, and 2 outputs in the final layer was added.
This new model was combined with our FCN and Encoder
models by concatenation of the last layer of the CNNs.

Age and gender data were passed into the simple neural
network as integers, but in some information files, the age
of the patient was not given and was assigned a value of
-1. The gender data was transformed into integers, where
a male was set equal to 0, female equal to 1, and unknown
was set to 2.

The two CNN models (FCN and Encoder) were com-
bined as parallel models, concatenated on the second last
layer. This model was tested with and without a parallel
dense layer1.

2.4. Rule-based model

The rule-based algorithm used the raw ECG signal,
without any padding or truncating, as input. R-peak de-
tection [8], and heart rate variability (HRV) analysis was
programmed to add relevant derived features to the al-
gorithm. An HRV-score was obtained by computing the
root mean square of successive differences between nor-
mal heartbeats (RMSSD) using the detected R-peaks as
timing indicators of each heartbeat.

The rule-based algorithm was able to classify eight dif-
ferent diagnoses: atrial fibrillation, bradycardia, low QRS-
complex, normal sinus rhythm, pacing rhythm, sinus ar-
rhythmia, sinus bradycardia, and sinus tachycardia.

The rule-based algorithm performed classification inde-
pendent of the deep learning models. If there was dis-
agreement between the rule-based algorithm and the CNN
model, the rule-based algorithm overwrote the classifica-
tion from the CNN model.

1All models and algorithms are available here: https://www.ka
ggle.com/bjoernjostein/physionet-challenge-2020

2.5. Model development

The models were trained and validated on the develop-
ment data using hold-out validation with a split of 90% for
training and 10% for validation. The first fold in a stratified
K-fold was used with a random seed of 42 [9]. The split-
ting was arranged such that the distribution of diagnoses
was the same in both the train and validation data.

During training, the Area Under the Curve (AUC) score
on the validation set was used to determine if the learning
rate should drop or stay. The learning rate was initially set
to 0.001 for all models and decreased by a factor of 10,
using the reduce on plateau method [10], for each epoch
that the AUC score did not improve. Early stopping [10]
was triggered when the AUC score on the validation data
did not improve over two successive epochs.

2.6. Threshold optimization

The prediction thresholds were optimized during model
development. This was done by running the classifier on
the hold-out validation data and receiving a score between
0 and 1 for each of the classes. The Nelder-Mead down-
hill simplex method [11, 12] was applied to optimize the
threshold individually for the 27 classes. The Nelder-Mead
downhill simplex method is used to find the local minimum
of a function using the function itself and an initial guess
of the variable of the function. The 27-element long array
was optimized using the negative of the PhysioNet/CinC
Challenge score [6]. To increase the possibility of find-
ing the global maximum of the PhysioNet/CinC Challenge
score, all elements in the 27-element long array was given
a value of 1 and multiplied it with a variable that was given
values from 0 to 1, with a step size of 0.05. The value
that gave the highest PhysioNet/CinC Challenge score was
used as the initial guess for the Nelder-Mead downhill sim-
plex method.

2.7. Model deployment

To obtain a valid score in the PhysioNet/CinC Challenge
we submitted the models to the PhysioNet/CinC commit-
tee for testing on a Challenge validation and test set [6].

A Docker image was used to create a virtual Python en-
vironment for the model to be tested. During model de-
ployment, the model was trained on the whole develop-
ment set. The first three Challenge validation scores were
obtained using AUC on the development data to schedule
the reduction of the learning rate.

The two last Challenge validation scores were obtained
using a learning rate scheduler. The learning rate schedule
was programmed to be the same as in model development.

https://www.kaggle.com/bjoernjostein/physionet-challenge-2020
https://www.kaggle.com/bjoernjostein/physionet-challenge-2020


Model ID and name Rule-based model AUC F1 F2 G2 Challenge score
A) FCN No 0.875 0.381 0.446 0.230 0.348
B) Encoder No 0.866 0.396 0.429 0.228 0.398
C) FCN + age, gender No 0.877 0.368 0.438 0.222 0.385
D) Encoder + age, gender No 0.828 0.334 0.389 0.190 0.333
E) Encoder + FCN No 0.872 0.399 0.436 0.237 0.409
F) Encoder + FCN Yes 0.872 0.361 0.413 0.203 0.348
G) Encoder + FCN + age, gender No 0.866 0.400 0.434 0.233 0.395
H) Encoder + FCN + age, gender Yes 0.866 0.356 0.405 0.198 0.338

Table 1. Scores were obtained by eight different models during model development. The models were evaluated by five
different metrics, AUC, F1, F2, G2, and the PhysioNet/CinC Challenge score, during model development.

2.8. General parameters for both valida-
tion and testing procedures

For all models in both development and deployment, we
used Adam optimizer, a batch size of 30, and binary cross-
entropy as the loss function. A batch generator was used
to feed the model with data during training, programmed
to shuffle the order of data for each epoch.

Weights based on the number of occurrences of the dif-
ferent classes were calculated to deal with the skewed
classes in the development data [9]. The calculated
weights were passed to the model during training to give
higher priority to rare diagnoses and lower priority to di-
agnoses that occurred more frequently.

3. Results

3.1. Scoring metrics

During model development, all models were validated
on a subset of the development data using the metrics AUC
(Eq 1), F1-score (Eq 2), F2-score (Eq 3), G2-score (Eq 4),
and the PhysioNet/CinC Challenge score, as seen in Ta-
ble 1. On the Challenge validation set, we only obtained
the PhysioNet/CinC Challenge score as seen in Table 2.
After the evaluation of the performance on the full Chal-
lenge test set we were provided AUC (Eq 1), F1-score (Eq
2), PhysioNet/CinC Challenge score, an Area Under the
Precision-Recall Curve (AUPRC) score, and an accuracy
score.

AUC(ti−ti−1) = (ti − ti−1)×
f(ti) + f(ti−1)

2
(Eq 1)

F1 =
2× TP

2 ∗ TP + FP + FN
(Eq 2)

F2 =
(1 + 22)× TP

(1 + 22)× TP + FP + 22 × FN
(Eq 3)

G2 =
TP

TP + FP + 2× FN
(Eq 4)

3.2. Classification performance

Five out of the eight models tested during the develop-
ment phase, as seen in Table 1, were successfully deployed
and obtained a score on the Challenge validation set, pre-
sented in Table 2.

Model ID Rule-based Challenge
and name model score
B) Encoder No 0.229
C) FCN + age, gender No 0.302
D) Encoder + age, gender No 0.272
F) Encoder + FCN Yes 0.377
H) Encoder + FCN Yes 0.364
+ age, gender

Table 2. The scores are obtained on the Challenge valida-
tion set and only the PhysioNet/CinC Challenge score was
given. The Challenge validation set is a subset of the Chal-
lenge test set and not the final score in the challenge. The
scores achieved on the Challenge validation set was used
to select one model for deployment on the full Challenge
test set.

The best score on the Challenge validation set was
achieved by model H, an Encoder in parallel with an FCN
with the rule-based algorithms added, as seen in Table 2.
Model H was finally deployed and scored on the full Chal-
lenge test set [6]. The model achieved an AUC-score of
0.728, an F1-score of 0.233, and a PhysioNet/CinC Chal-
lenge score of 0.206. This score brought us, TeamUIO, to
20th place in the PhysioNet/CinC Challenge 2020.

4. Discussion and conclusion

We chose to pad and truncate the signals to 5000 sam-
ples which were necessary to be able to feed the signal to



the CNN. The disadvantage was that some important infor-
mation from segments of the ECG recordings might have
been omitted in training the models. On the other hand,
the derived features used in the rule-based implementation
were based on complete recordings. Thus, the models that
combined both CNN and rule-based algorithms used the
entire signal when classifying the ECG.

Deployment of the models was done using two differ-
ent ways of controlling the learning rate. The scores of
models B, C, and D, on the Challenge validation set (Table
2), were obtained by using AUC on the development data
to schedule the reduction of the learning rate. This might
have contributed to overfitting indicated by the difference
of the Challenge score of models B, C, and D in Table 1
compared with the same models in Table 2. The Chal-
lenge score achieved on the Challenge validation data by
model F and G (Table 2), were obtained using a learning
rate scheduler [10]. The PhysioNet/CinC Challenge scores
achieved on the Challenge validation data by model F and
G (Table 2) are more consistent with the PhysioNet/CinC
Challenge score obtained on the development data in Ta-
ble 1 for the same models. In summary, our result indicates
that the models, deployed on the Challenge validation set,
which kept the same training schedule as in the develop-
ment model, seem to avoid overfitting and perform better
on unseen data.

During the model development, we observed that the
Encoder (model B) performed better than the FCN (model
A) on the PhysioNet/CinC Challenge score as seen in Ta-
ble 1. A plain FCN (model A) was not scored on the Chal-
lenge validation set and thus it remains unclear which of a
plain FCN or a plain Encoder perform best on unseen data
like the Challenge validation data.

The Encoder (model B) decreased in performance when
a parallel model for age and gender was added (model
D) during model development (Table 1). However, the
performance increased when the Encoder (model B) was
added a parallel model for age and gender (model D) when
scoring the models on the Challenge validation set (Table
2). Based on the PhysioNet/CinC Challenge score, dur-
ing model development (Table 1), the FCN (model A) im-
proved in performance when adding a parallel model for
age and gender (model C). However, we did not deploy a
plain FCN (model A) to the Challenge validation set and
thus it remains unclear if the FCN + age and gender (model
C) would outperform the FCN (model A) on the Challenge
validation set.

During model development (Table 1), the Encoder +
FCN (model E) and the Encoder + FCN + age, gender
(model G), decreased in performance when adding the
rule-based model (model F and H). However, the Phys-
ioNet/CinC Challenge score, achieved by model F and G
on the Challenge validation set (Table 2), was better than

the PhysioNet/CinC Challenge score achieved by the same
models during model development (Table 1). Our results
indicate that the hybridization of CNN with a rule-based
model could improve the diagnostic classification of ECG,
but further analysis is needed to confirm whether, and to
which extent such implementation improves the perfor-
mance of the proposed CNN models.
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