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Abstract

The latest trends in clinical care and telemedicine sug-
gest a demand for a reliable automated electrocardiogram
(ECG) signal classification methods. In this paper, we
present customized deep learning model for ECG classi-
fication as a part of the Physionet/CinC Challenge 2020.
The method is based on modified ResNet type convolu-
tional neural network and is capable to automatically rec-
ognize 24 cardiac abnormalities using 12-lead ECG. We
have adopted several preprocessing and learning tech-
niques including custom tailored loss function, dedicated
classification layer and Bayesian threshold optimization
which have major positive impact on the model perfor-
mance. At the official phase of the Challenge, our team -
BUTTeam - reached a challenge validation score of 0.696,
and the full test score of 0.202, placing us 21 out of 40
in the official ranking. This implies that our method per-
formed well on data from the same source (reached first
place with validation score), however; it has very poor gen-
eralization to data from different sources.

1. Introduction

A large number of automated ECG classification meth-
ods have been reported over last decade, most of which
have only been evaluated on small or homogeneous
datasets. In this paper, we present deep learning model for
ECG classification as a part of the Physionet/CinC Chal-
lenge 2020 [1}/2]. The Challenge data consists of 12-
lead ECGs from wide range of sources and recording plat-
forms including signals of low quality or highly variable
length. As another challenging task, the data contains var-
ious numbers of reported non-exclusive abnormalities ob-
tained with inhomogeneous annotation methods.

The aim of the model is to classify these signals in a
multi-label manner into one or more of 24 given classes.
Major improvements of the method were achieved by: (1)
customized convolutional neural network architecture with

local and global skip connections, (2) data augmentation,
(3) custom loss function based on the challenge metric, and
(4) class specific threshold optimization.

2. Material and Methods

2.1. Data

Training dataset is composed of 43,101 labeled record-
ings from 6 different sources [1}/2]. Recordings are sam-
pled with various sampling frequencies (257, 500 or 1000
Hz) and resolution settings. The dataset includes 24
scored pathologies and it consists of data from 6 different
databases (see [2]] for more details).

2.2. Data preprocessing

Preprocessing pipeline consisted of time-domain resam-
pling with the fixed sampling frequency 125 Hz (linear
interpolation combined with decimation and anti-aliasing
FIR filter, if needed) for both training phase and inference.
Additionally, augmentation tasks such as +10% stretch
along temporal axis (p=0.8) or +20% amplification along
voltage axis (p=0.8) were randomly applied during training
to prevent the model from overfitting. Long-term Holter
recordings are due to possible memory issues only allowed
to pass through the model during the inference. Then, di-
vided into smaller segments, they are fed into the model
as a variable-sized batch. Non-redundant binary encoded
labels from the entire batch are then joined together into a
single vector.

2.3.  Model Architecture

In our work, we have adopted a Convolutional Neu-
ral Network (CNN) architecture based on a residual neu-
ral network (ResNet) [3], which is simple yet proven de-
sign for image multi-label classification tasks. Original 2D
convolutional filters were replaced by its 1D equivalents.
In order to address vanishing gradient problem efficiently,



skip connections across residual layers were extended by
global skip connection [4] providing a direct shortcut to
the model input layer (Input Gate in Figure 1). ResNet
based feature extractor consists of 6 residual blocks each
of which contains 3 convolutional layers (k = 3). Since
the data can be assigned into ¢ non-exclusive classes, fi-
nal classification layer is composed of ¢ = 24 independent
fully connected binary classifiers. This structure allows ar-
bitrary combination of class labels [5] and, based on its
principle, can be referred to as a Binary Units Training
Technique (BUTT). Implementation details of proposed
model architecture are depicted in Figure[I]
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Figure 1: Architecture of proposed model. ¢ — block number of ResNet;
k — number of layer in residual block; n — number of filters in first layer

In order to use a mini-batch optimization, collected data
samples were padded by zeros to equal length. This pro-
cedure may adversely affect extracted features if global or
adaptive pooling are applied over temporal axis. To ad-
dress this problem the zero-padded equivalent is cut out
just after leaving ResNet layers. Global Max Pooling is
then performed over temporal dimension and pooled ten-
sor is fed into BUTT classifier.

2.4. Loss Function

Cross-entropy is commonly used as a loss function for
classification tasks [6]. In the case of class imbalanced
data, weighted variant of cross-entropy (WCE) or gener-
alised dice loss function [[7] can be introduced instead to
provide better stability of a model during an onset phase of
training. In multi-label classification problems WCE can
be defined as follows:

WCE = — ijtc log (pe) + w_ (1 —t)log (1 — pe),
ey

where ¢ are individual classes, t. € {0,1} are binary
encoded labels, p. € [0, 1] are model output scores, and

wl and w_ are weights for positive and negative classes,
respectively.

Weights are inversely proportional to its frequency in
the training dataset, specifically, w? = N/N} and w, =
N/N; = N/(N — NJ). N is the total number of sam-
ples, N.;F and N are the numbers of positive and negative
samples within given class.

2.5. Custom Loss Function

The official Challenge Metric (CM) is based on modi-
fied confusion matrix A, where each entry a;; (confusion)
is weighted according to given clinical importance w;;:

CM = Zaijwij. (2)
ij
On this basis, we have derived a custom loss function,
which includes the same clinical importance measures. In
a multi-label case, modified confusion matrix A can be
expressed by a matrix multiplication:

A=LT(RON), 3)

where operator © represents point-wise division, L and
R are N x ¢ binary matrices, formed by one-hot encoded
ground truth labels and thresholded model output scores,
respectively. IN is N X ¢ normalizing matrix factoring in
number of unique labels for each sample from L and R
according to:

N = ((L|R)1c><1)11><ca (4)

where 1¢x1 is ¢ x 1 all-ones matrix and symbol | stands
for bit-wise binary OR operator. Operator OR as well as
binary matrix R can now be replaced with its continuous
equivalent using raw output scores p. as follows:

N=(L+R-LOR)lea)live, ()

where operator ® represents point-wise multiplication.
This makes the metric differentiable, thus it can be used
as a loss function.

2.6.  Class Specific Threshold Optimization

Mapping a raw score of class membership onto a class
label with the default threshold value of 0.5 does not al-
ways guarantee the best model performance with respect to
a given metric. Thus, proposed model transforms raw out-
put scores using a set of class-specific thresholds 7.. Each
T, was estimated via Python implementation of Bayesian
Optimization [_8] with respect to CM loss function. Opti-
mization was performed on a validation part of the dataset.



2.7. Model Training

Weights and biases of convolutional layers were initial-
ized with Xavier [9]] and constant (c=0) initialization, re-
spectively. Model training was performed by Adam opti-
mizer (51 = 0.9; B2 = 0.999) [10]] with decoupled weight
decay regularization (A = 107°) [11]], modified learning
rate schedule (og = 1072) and mini-batch size of 32.
Learning rate schedule consisted of two cycles with decay-
ing learning rate strategy 0.lag every 30 epochs in each
cycle. During the first cycle, the model was trained with
the WCE, while in the second cycle custom CM Loss was
used to retrain the model.

To bridge the generalization gap, we have adopted a
Stochastic Weight Averaging algorithm [12] which cap-
tures model weights w,, in the end of every epoch and then
sets new model with weights wgy 4 as a running average
of w,, from the last m captured models.

2.8. Ensemble Modeling

Combination of multiple models can decrease variance
and may produce a more generalized output [13]. Final
class label is thus given by a majority vote of 3 bootstrap
aggregated ensembles, each fitted to a 90 % subset of the
training data. The number of ensembles has been chosen
to meet the computational limits of the Challenge.

3. Results and Discussion

Model performance was internally evaluated with a
hold-out method using 10 % randomly sampled subset of
the training data. Final evaluation has been performed
on the Challenge hidden datasets - which consist of 3
databases. A comparison of a base model with various
hyper-parameter setting using the Challenge Metric (CM)
and the Dice Coefficient (DC) [[14] is listed in Table [T}

Table 1: The results of models with various hyper-parameters and without
(w/0) applied customization on the hold-out training subset (n - number
of filters in first layer (¢ X n for ¢ —th layer) ; kK — number of convolutional
layers in block; f - filter size).

Model CM DC

Small model (n =12; k=3, f =7) 0.665 0.542
Deepmodel (n =12, k=12, f =7) | 0.667 0.544
Wide model (n =48, k=3, f=T7) 0.687 0.571
Smaller filters (n = 48, k=3, f =3) | 0.679 0.570
Larger filters (n = 48, k=3, f = 11) | 0.677 0.558
w/o augmentation (Wide model) 0.646 0.559
w/o CM Loss (Wide model) 0.636 0.552
w/o global skip con. (Wide model) 0.679 0.563

The best results were reached with the "Wide” model
in which the number of convolutional filters (kernel size

Table 2: The results of the best performing model on the hold-out training
subset and the hidden datasets.

Data CM DC
Training subset | 0.687 | 0.571
Validation data | 0.696 | 0.522

Database 1 0.892 | 0.245
Database 2 0.235 | 0.259
Database 3 0.104 | 0.251

Full Test Set 0.202 | 0.277

= 7) were preferred to a model depth. Model widening
was performed by simply increasing the number of filters
within each convolutional layer. This has led to the largest
improvement of the DC by 0.03. Any further increment in
the model depth by adding more convolution layers did not
improve the model performance as well as either reduction
or expansion of filter size.

Another improvement has been achieved by using the
CM Loss function. Efficiency of the CM Loss is greatly
dependent on mini-batch size and has been proven to cause
an unstable learning (from scratch) of the model. How-
ever, when used as a secondary loss function during cy-
cling learning rate schedule, it has led to an increase of
DC by 0.02. Data augmentation strategies mentioned pre-
viously showed an increment in DC by 0.01. On the other
hand, some of preprocessing methods (e.g. baseline drift
removal, temporal shifting, noise addition or simulation of
electrode switch) have had no effect neither on the model
performance nor on generalization capability most likely
due to a sufficient diversity of the dataset.

Classification results for individual classes are shown
in Figure [2| The best performance (DC > 0.8) has been
reached for AF, SNR and PR. DC > (0.6 was obtained in
more than 45 % of classes. It should be noted that the
model performance is still substandard in some of well
distinguishable pathologies such as PVC, PAC, Brady, etc.
This may be primarily caused by low occurrence of those
classes in the dataset, and also by a presence of annotation
inconsistencies (typically confusion of PVC for PAC).

Results of the best performing model on training hold-
out and hidden sets are listed in Table The results
from ongoing leaderboard are referred as validation re-
sults, which data contained hidden subset from training
databases. The final full test set contains 3 databases,
where Database 1 contains data from the same source as
one of the training databases, however, Database 2 and
Database 3 contain data from a different source, thus they
are more challenging and require a good generalization of
the model. As can be seen in Table[2] our model performs
well on data from the same source as training data (Vali-
dation data and Database 1), where it performs best out of
40 challenge teams, however, it fails on data from different



sources (Database 2 and Database 3). For this reason, our
overall results on full test set reached 0.202 of challenge
metric, which placed us 21 out of 40 teams in the official
ranking.
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Figure 2: The results for individual classes. Total counts of true positive
(TP), true negative (TN), false positive (FP) and false negative (FN) cases
are given on the right side of each bar. Individual DC is given at the top of
the related bar. Abbreviation for pathologies are listed in [2]]. Evaluation
is done on hold-out training subset.

4. Conclusions

Our ResNet based CNN architecture with BUTT as ded-
icated classification layer and custom CM Loss function
has met the main aim of the Challenge and is capable to
automatically recognize 24 of given pathologies. At the
official phase of the Challenge, our team - BUTTeam -
reached a challenge validation score of 0.696, and the full
test score of 0.202, placing us 21 out of 40 in the official
ranking. This implies that our method performed well on
data from the same source (reached first place with val-
idation score), however, it has very poor generalization
to data from different sources. The code is available at
https://github.com/tomasvicar/BUTTeam.
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