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Abstract

Feasible real-time ECG classification algorithms con-
tribute to an early and correct diagnosis of cardiac ab-
normalities. In this paper, we (team Triology) leverage 80
Hz ECG signals to develop a lightweight end-to-end neu-
ral network. A soft voting scheme is applied to determining
the prediction in a long record from multiple segments. The
model has a ResNet-18 backbone. It integrates standard
and dilated convolutions to extract multi-scale informa-
tion. Anti-aliased blocks are used for shift invariance. Age
and sex are included. To encourage the inter-class compe-
tition in the multi-label classification task, lovász softmax
and weighted cross entropy loss are randomly selected in
the training process, which facilitates model convergence.
In order to derive a robust model, data augmentation ap-
proaches like Gaussian noise, random erasing and shifting
are implemented. Our offline validation is carried out us-
ing databases from four sources. We score 0.328 using the
challenge metric. False negatives are main errors.

1. Introduction

Cardiovascular abnormalities are common health prob-
lems. They are potential risk factors for cardiovascular
diseases such as stroke [1]. High quality diagnosis at an
early stage can bring increased successful treatments and
life quality to potential patients. Moreover, a good auto-
matic detection and classification system of cardiac abnor-
malities emancipates the clinicians from the onerous man-
ual interpretation workload. The standard 12-lead Electro-
cardiogram provides sufficient physiological information,
and it is an widely used as an invasive way to monitor heart
activity.

Deep neural networks (DNNs) generalize well to large-
scale database. An end-to-end scheme enables DNNs
to learn effective representations automatically from raw
data. Correspondingly, classical classifiers like support

vector machine and random forest use hand-crafted fea-
tures, which are designed according to expert knowl-
edge. However, hardware resource limits the applicabil-
ity of DNNs. In this manuscript, we explored a light-
weight DNN method based on ResNet18 model for 1-D
input, integrating anti-aliased design and multi-scale de-
sign into model structure. Two relevant factors, age and
sex are considered when making predictions. The Phys-
ioNet/Computing in Cardiology Challenge 2020 [2] pro-
vides large scale databases from multi-centers, enabling us
to validate the credibility of our algorithm. Normal class
accounts for a large proportion. In regard of the long-
tailed distribution of categories and the label distribution,
we utilize undersampling method. Weighted cross entropy
loss and lovász softmax loss are combined to optimize the
model. Furthermore, data augmentation approach is ap-
plied to improve model robustness. Our model needs to
reduce false positives in the offline validation.

2. Related work

This section illustrates DNNs for classification tasks
from ECG signals. Previous work shows the feasibility
of deep neural networks in heart rhythm classification.
ResNet appears to be a good baseline. In Physionet 2017
challenge [3], Xiong et al design a ResNet block, achiev-
ing good performance in AF classification [4]. Hannun et
al reported a DNN to capture morphological characteris-
tics of ECG. It shows good performance in a wide range
of heart rhythm categories [5]. Chen et al stack CNN
blocks to compute useful representations. The subsequent
bio-directional RNN layer and an attention layer are used
to learn temporal information. They suggest that using
single-lead information can have good performance from
12-leads in predicting multiple cardiac arrhythmia (CA)
[6]. Our previous work illustrates that the sampling rate
of ECG data can be as low as 60 Hz when records com-
prise of atrial fibrillation and normal rhythm. It validates



the feasibility of light-weight neural networks [7]. How-
ever, this technique should be tested in a larger database
with more CA.

3. Methods

Figure 1: System overview.

Fig. 1 gives an overview of our system. Firstly, we split
downsampled records into small segments. Therefore, the
system can process records with different duration. Sec-
ondly, our end-to-end deep neural network outputs predic-
tions of each segments. We take averaged probability of
each segments as record prediction. Finally, in the training
process, we use record prediction, together with ground
truth to compute loss.

Following sections introduce our notations and the chal-
lenge metric. Afterwards, we illustrate each procedure of
the system.

3.1. Notations

Throughout the paper we denote a 12-lead ECG record
data as X ∈ R12×N , where N is the number of samples.
The corresponding label is defined as an one-hot vector z.
The record is divided into small segments xi ∈ R12×n, i ∈
[1, f loor(Nn )] after removing modn(N) samples, where n
is the number of samples of a segment, and floor(·) takes
the nearest integer that is smaller than the input. Each
segment is processed by the DNN T (·), where the output
y ∈ R1×m satisfies y = T (xi), where m is the size of the
heart rhythm set C = {c1, c2, · · · , cm}. Both softmax
and sigmoid methods are used to transform y into a prob-
ability estimation for each class. The elements of psoftmax

and psigmoid are computed as shown in Eq (1) and (2).

softmax: pcisoftmax =
eyi∑

k∈C eyk
, (1)

sigmoid: pcisigmoid =
1

1 + e−yi
. (2)

We also denote the categories that are scored with the chal-
lenge metric using sorted class index as shown in Table 1.

Table 1: Amount of each heart rhythm category.

SNOMED CT CODE Sorted Class Index Amount
10370003 0 299
111975006 1 277
164889003 2 3473
164890007 3 314
164909002 4 1041
164917005 5 1013
164934002 6 4673
164947007 7 340
251146004 8 556
270492004 9 2394
284470004 10 2534
39732003 11 6086
426177001 12 2359
426627000 13 277
426783006 14 20486
427084000 15 2391
427172004 16 1283
427393009 17 1238
445118002 18 1806
47665007 19 427
59931005 20 1111
698252002 21 996
713426002 22 1611
713427006 23 3083

3.2. Challenge metric

The evaluation metric generalizes the traditional accu-
racy by assigning different weights to the multi-class con-
fusion matrix A, where the weight matrix W reflects the
outcome or treatment that is on the basis of true diagnosis
as well as partial misdiagnosis. It demonstrates that con-
fusing some classes is much less harmful. The score s is
given by adding up the elements of the weighted multi-
class confusion matrix W ◦ A, where ◦ is the Hadamard
product. Then the score is mapped to [0, 1] using the
min-max scaling scheme, where the maximum value is the
score of a perfect classifier with 100% accuracy and the
minimum value is that of an inactive classifier whose out-
put is always normal class [2]. According, true negatives
are neither rewarded nor penalized.

3.3. Data and preprocessing

Training data for the challenge are from multiple
sources. The first source is the training and unused data
from the China Physiological Signal Challenge in 2018
(CPSC2018). The second source is from the publicly avail-
able St Petersburg INCART 12-lead Arrhythmia Database.



The third source set from the Physikalisch Technische
Bundesanstalt (PTB) consists of two public databases:
the PTB Diagnostic ECG Database which contains 549
records and the PTB-XL, a large dataset containing 21,837
ECG records. The fourth source is a Georgia database
provided by Emory University, representing a unique de-
mographic of the Southeastern United States. We pool
the four databases together. The basic information of
the pooled database is summarized in Table 2. Using

Table 2: Basic information of the pooled dataset

Female 22988 (0.534)

Label quantity
1 22551
2 10138
≥ 3 5954

downsampled signal is the core design in our light-weight
scheme. Our previous work demonstrated that sampling
frequency for distinguishing atrial fibrillation and normal
rhythms can be as low as 60 Hz. Considered to the fact that
the heart rhythm categories are largely expanded, we adopt
80 Hz signal to preserve sufficient information. Mean val-
ues are subtracted from each ECG lead.

3.4. Model structure

Our model structure is presented in Fig 2. The model
backbone is modified from ResNet18 for 1-D signals,
where 12 leads are regarded as different channels. We
integrated two useful model architecture designs namely
multi-scale design and anti-aliased design to embed impor-
tant priors. Multi-scale design means using kernels of dif-
ferent sizes to capture information in multi-scale receptive
fields. To further reduce the computation load, we imple-
mented dilation convolution blocks where kernel size and
stride is 3 and 2, respectively. It’s an alternative of 1-D
convolution blocks where kernel size is 5. The anti-aliased
design accounts for the prior that models should possess
shift invariance. It improves downscaling blocks by blur
filters [8]. Batch normalization are replaced by instance
normalization (IN) [9]. Age and sex are introduced into
the feature set due that many ECG parameters are age- and
sex-dependent [10, 11].

3.5. Loss

The loss function is defined as shown in Eq (3).

Loss(X, z) =


Loss1(

1

n

n∑
i=1

psoftmax, z) , v ≤ 0.5

Loss2(
1

n

n∑
i=1

psigmoid, z) , v > 0.5

,

(3)
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Figure 2: Model structure. The model backbone is a ResNet18 for 1-D
input. The convolutional layers in two branches are of same kernel size
(3) but different dilation (1 and 2). IN means instance normalization.
The anti-aliased design here means using a max-pooling layer (stride =
1) and a blur-pooling layer (stride = 2) instead of a max-pooling layer
(stride = 2).

where v ∼ U(0, 1) is a random variable, Loss1 and Loss2
are weighted cross entropy loss and lovász-softmax loss
[12], respectively. Random shifts between the two loss
function are designed to encourage the inter-class compe-
tition. Table 2 shows that many records have very few la-
bels. The overwhelming size of output space is a key chal-
lenge of developing models for multi-label classification
tasks [13], which is the motivation to design the loss.

To obtain final prediction needs category-wise threshold
{thi, i ∈ C}. The estimated probability possesses follow-
ing property:

sgn(pcisoftmax − thi) = sgn(pcisigmoid − thi). (4)

Therefore, we obtain

(pcisoftmax − thi)(p
ci
sigmoid − thi) ≥ 0.

Denote ki =
p
ci
sigmoid

p
ci
softmax

, we have

(pcisigmoid − thi)(p
ci
sigmoid − kithi) ≥ 0. (5)

Therefore, using two probability estimation increases the
chance to penalize low-confidence predictions.

3.6. Training process

Considered to the fact that different categories may arise
at different period, only record prediction and ground truth
were used to compute loss. Using thresholds from the
training set, we transformed the predictions from proba-
bilities to their binary form. The model was trained using
an Adam optimizer, with a 0.0003 learning rate. We ac-
cumulated the gradients and make back propagation every



64 records. During the training process, the dropout prob-
ability was set to 0.3. Last but not the least, we used data
augmentation methods including adding Gaussian noise,
random erasing and shifting.

4. Results and discussion

To evaluate the performance of our algorithm, the model
for diagnosing the hidden test set is determined by the
training and validation set. In total 80% of the data are
selected as the training set, and the rest are used as valida-
tion set. Both of them include all 24 categories. We also
randomly excluded records with signal absence and noisy
records based on standard deviation threshold. Undersam-
pling strategy was adopted to remove 30% normal records
from training set. We measured the challenge metrics in
the validation set every 3 epochs and stored the best pa-
rameters.

Currently, false positives are major errors in our offline
validation, where the model scores 0.328. From our view,
it indicates that a more competitive inter-class competition
is needed. To find the best hyper-parameters, we compared
using 60, 80 and 100 Hz signal, and ablation experiments
are necessary.

5. Conclusion

This paper validates a light-weight end-to-end DNN for
downsampled 12-lead ECG diagnosis. The model inte-
grates multi-scale and anti-aliased design and basic char-
acteristics like age and sex. It achieves feasible results
when the amount of heart rhythm classes is small. Switch-
ing between softmax and sigmoid activation is a strategy
to get multi-class output and encourage inter-class com-
petition. Future work is to perform ablation experiments
and improve model performance when the amount of heart
rhythm classes is large.
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