AF Classification from a Short Single Lead ECG Recording: The PhysioNet/Computing in Cardiology Challenge 2017

Citations

For 2017 Challenge, please cite:

Gari Clifford, Chengyu Liu, Benjamin Moody, Li-Wei Lehman, Ikaro Silva, Qiao Li, Alistair Johnson, Roger Mark. (2017) AF Classification from a Short Single Lead ECG Recording: the Physionet Computing in Cardiology Challenge 2017, 44, https://doi.org/10.22489/CinC.2017.065-469

Challenge results

The conference papers for Computing in Cardiology 2017 are available on the CinC and IEEE websites.

The scores for the teams and their papers and entry code are available in the table below.

Rank Score Team Member(s) Paper Entry Code Journal Paper
1 0.83 Shreyasi Datta, Chetanya Puri, Ayan Mukherjee, Rohan Banerjee, Anirban Dutta Choudhury, Arijit Ukil, Soma Bandyopadhyay, Rituraj Singh, Arpan Pal, Sundeep Khandelwal Identifying Normal, AF and other Abnormal ECG Rhythms using a Cascaded Binary Classifier. shreyasi-datta-209 Detection of atrial fibrillation and other abnormal rhythms from ECG using a multi-layer classifier architecture
1 0.83 Shenda Hong, Yuxi Zhou, Qingyun Wang, Meng Wu, Junyuan Shang ENCASE: an ENsemble ClASsifiEr for ECG Classification Using Expert Features and Deep Neural Networks shenda-hong-221 Combining deep neural networks and engineered features for cardiac arrhythmia detection from ECG recordings
1 0.83 Tomás Teijeiro, Constantino A. García, Paulo Félix, Daniel Castro Arrhythmia Classification from the Abductive Interpretation of Short Single-Lead ECG Records tomas-teijeiro-220 Abductive reasoning as a basis to reproduce expert criteria in ECG atrial fibrillation identification
1 0.83 Morteza Zabihi, Ali Bahrami Rad Detection of Atrial Fibrillation in ECG Hand-held Devices Using a Random Forest Classifier. morteza-zabihi-208  
* 0.83 Ruhi Mahajan, Oguz Akbilgic, Rishikesan Kamaleswaran, J. Andrew Howe Cardiac Rhythm Classification from a Short Single Lead ECG Recording via Random Forest ruhi-mahajan-209  
5 0.82 Mohammed Baydoun, Lise Safatly, Hassan Ghaziri, Ali El-Haj   mohammed-baydoun-208  
5 0.82 Guangyu Bin, Minggang Shao, Jiao Huang, Guanghong Bin Detection of Atrial Fibrillation Using Decision Tree Ensemble guangyu-bin-211 Detection of atrial fibrillation from ECG recordings using decision tree ensemble with multi-level features
5 0.82 Zhaohan Xiong, Dr Jichao Zhao Robust ECG Signal Classification for the Detection of Atrial Fibrillation Using Novel Neural Networks zhaohan-xiong-282 ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network
5 0.82 Martin Zihlmann, Michael Tschannen, Dmytro Perekrestenko Convolutional Recurrent Neural Networks for Electrocardiogram Classification martin-zihlmann-209  
9 0.81 Sebastian D. Goodfellow, Dr. Danny Eytan, Andrew Goodwin, Robert Greer, Dr. Peter Laussen, Dr. Mjaye Mazwi Classification of Atrial Fibrillation Using Multidisciplinary Features and Gradient Boosting sebastian-goodfellow-254  
9 0.81 Martin Kropf, Dieter Hayn, Günter Schreier ECG Classification Based on Time and Frequency Domain Features Using Random Forrests martin-kropf-205 Cardiac anomaly detection based on time and frequency domain features using tree-based classifiers
9 0.81 Filip Plesinger, Petr Nejedly, Josef Halamek, Ivo Viscor, Pavel Jurak Automatic Detection of Atrial Fibrillation and Other Arrhythmias in Holter ECG Recordings using PQRS Morphology and Rhythm Features filip-plesinger-210 Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG
9 0.81 Ashish Sharma, Dr Shivnarayan Patidar Automated Detection of Atrial Fbrillation using Fourier-Bessel expansion and Teager Energy Operator from Electrocardiogram Signals ashish-sharma-210  
9 0.81 Dawid Smoleń Atrial Fibrillation Detection Using Boosting and Stacking Ensemble dawid-smolen-206  
9 0.81 Marcus Vollmer, Philipp Sodmann, Neetika Nath, Leonard Caanitz Can Supervised Learning Be Used to Classify Cardiac Rhythms? marcus-vollmer-240 A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms
9 0.81 Chen Yao, Liu Dayiheng, Cheng dongdong, Hu Wei, Xu Kun, Yang Kexin, Wang Jian, Jiang Zhe   chen-yao-276 Classification of short single-lead electrocardiograms (ECGs) for atrial fibrillation detection using piecewise linear spline and XGBoost
x 0.81 Radovan Smíšek, Lukáš Smital, Martin Vítek, Marina Ronzhina, Jakub Hejč, Andrea Němcová, Lucie Maršánová, Jiří Chmelík, Jana Kolářová, Ivo Provazník SVM Based ECG Classification Using Rhythm and Morphology Features, Cluster Analysis and Multilevel Noise Estimation radovan-smisek-213 Multi-stage SVM approach for cardiac arrhythmias detection in short single-lead ECG recorded by a wearable device
x 0.81 Maurizio Varanini, Lucia Billeci Detection of AF and Other Rhythms Using RR Variability and ECG Spectrum Measures maurizio-varanini-213  
16 0.80 Joachim A. Behar, Aviv Rosenberg, Yael Yaniv, Julien Oster Rhythm and Quality Classification from Short ECGs Recorded using a Mobile Device joachim-behar-214  
16 0.80 Ivaylo Christov, Vessela Krasteva, Iana Simova, Tatyana Neycheva, Ramun Schmid Multi-parametric Analysis for Atrial Fibrillation Classification in the ECG ivaylo-christov-204 Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG
16 0.80 Chen Jiayu, Nigel Lovell, Stephen Redmond, Heba Khamis   chen-jiayu-202  
16 0.80 Jonathan Rubin, Saman Parvaneh, Asif Rahman, Saeed Babaeizadeh, Bryan Conroy Densely Connected Convolutional Networks and Signal Quality Analysis to Detect Atrial Fibrillation Using Short Single-Lead ECG Recordings jonathan-rubin-226 Analyzing single-lead short ECG recordings using dense convolutional neural networks and feature-based post-processing to detect atrial fibrillation
16 0.80 Dionisije Sopic, Elisabetta De Giovanni, Amir Aminifar, David Atienza A Hierarchical Cardiac Rhythm Classification Methodology Based on Electrocardiogram Fiducial Points dionisije-sopic-208  
16 0.80 Gliner Vadim, Yaniv Yael Identification of Features for Machine Learning Analysis for Automatic Arrhythmogenic Event Classification gliner-vadim-210 An SVM approach for identifying atrial fibrillation
16 0.80 Philip A. Warrick, Masun Nabhan Homsi Cardiac Arrhythmia Detection from ECG Combining Convolutional and Long Short-Term Memory Networks philip-warrick-204 Ensembling convolutional and long short-term memory networks for electrocardiogram arrhythmia detection
* 0.80 Na Liu   na-liu-210 A support vector machine approach for AF classification from a short single-lead ECG recording
25 0.79 Fernando Andreotti, Oliver Carr, Marco A. F. Pimentel, Adam Mahdi, Maarten De Vos Comparing Feature Based Classifiers and Convolutional Neural Networks to Detect Arrhythmia from Short Segments of ECG fernando-andreotti-222  
25 0.79 Csaba Botos, Márton Áron Goda, Tamás Hakkel, Szilvia Herczeg, István Osztheimer, András Horváth   csaba-botos-247  
25 0.79 Marco Delai, Gaetano Scebba, Patrick Schwab, Jia Zhang Beat by Beat: Classifying Cardiac Arrhythmias with Recurrent Neural Networks marco-delai-245  
25 0.79 Sasan Yazdani, Jean-Marc Vesin Heart Rhythm Classification using Short-term ECG Atrial and Ventricular Activity Analysis sasan-yazdani-204  
29 0.78 Christoph Hoog Antink, Anne Kristin Braczynski, Steffen Leonhardt, Marian Walter Fusing QRS Detection, Waveform Features, and Robust Interval Estimation with a Random Forest to Classify Atrial Fibrillation christoph-hoog-antink-207  
29 0.78 Runnan He, Yang Liu Diagnosis of AF Based on Time and Frequency Features by using a Hierarchical Classifier runnan-he-210  
29 0.78 Vykintas Maknickas, Algirdas Maknickas Atrial Fibrillation Classification Using QRS Complex Features and LSTM vykintas-maknickas-210  
29 0.78 Nadi Sadr, Thuy Pham, Madhuka Jayawardhana, Asghar Balaie, Rui Tang, Philip de Chazal   nadi-sadr-208 A low-complexity algorithm for detection of atrial fibrillation using an ECG
* x 0.78 Ruhi Mahajan, Oguz Akbilgic, Rishikesan Kamaleswaran, J. Andrew Howe Cardiac Rhythm Classification from a Short Single Lead ECG Recording via Random Forest oguz-akbilgic-219.zip  
34 0.77 Mohamed Limam, Frederic Precioso AF Detection and ECG Classification based on Convolutional Recurrent Neural Network mohamed-limam-237  
34 0.77 Miguel Lozano, Viktor Kifer, Francisco Martinez-Gil   miguel-lozano-220  
34 0.77 Elena Simarro Mondéjar, Santiago Jiménez Serrano, Jaime Yagüe Mayans, Conrado J. Calvo, Paco Castells, José Millet Roig Atrial Fibrillation Detection Using Feedforward Neural Networks and Automatically Extracted Signal Features elena-simarro-mondejar-216  
34 0.77 Bradley M Whitaker, Muhammed Rizwan, V Burak Aydemir, David V Anderson AF Classification from ECG Recording Using Feature Ensemble and Sparse Coding bradley-whitaker-214 AF detection from ECG recordings using feature selection, sparse coding, and ensemble learning
38 0.76 Teo Soo-Kng, Yang Xulei, Nguyen Phu Binh, Gabriel Tjio, Feng Ling, Su Yi, Lim Toon Wei   teo-soo-kng-244  
39 0.75 Joel Karel, Pietro Bonizzi, Kurt Driessens Detection of Atrial Fibrillation Episodes from Short Single Lead Recordings by Means of Ensemble Learning joel-karel-203  
39 0.75 Zhenning Mei, Hongyu Chen, Xiao Gu, Wei Chen   zhenning-mei-209  
39 0.75 Rymko, Perka, Solinski, Rosinski, Lepek   rymko-207  
39 0.75 Katarzyna Stepien, Iga Grzegorczyk Classification of ECG Recordings with Neural Networks Based on Specific Morphological Features and Regularity of the Signal katarzyna-stepien-209  
44 0.74 Griet Goovaerts, Martijn Boussé, Otto Debals, Lieven De Lathauwer, Sabine Van Huffel   griet-goovaerts-206.zip  
45 0.73 Pedro Álvarez, Andreu M. Climent, María S. Guillem   pedro-alvarez-204  
45 0.73 Javier de la Torre Costa, Alfredo Torregrosa Lloret, Aitana Pascual Belda, Gabriel García Pardo   javier-de-la-torre-costa-205.zip  
45 0.73 Victor Manuel José Ocoa   victor-manuel-jose-ocoa-202.zip  
45 0.73 Heikki Väänänen, Jarno Mäkelä Electrocardiogram Classification – a Human Expert Way heikki-vaananen-201  
45 0.73 Vignesh Kalidas   vignesh-kalidas-204  
50 0.72 Kamran Kiani, Shadi Ghiasi, Mostafa Abdollahpur, Nasim Madani Atrial Fibrillation Detection Using Feature Based Algorithm and Deep Conventional Neural Network kamran-kiani-203  
51 0.71 Jos van der Westhuizen   jos-van-der-westhuizen-206  
* 0.71 Sandeep Chandra Bollepalli, S Sastry Challa, Soumya Jana, Shivnarayan Patidar Atrial Fibrillation Detection Using Convolutional Neural Networks b-s-chandra-207  
* 0.71 Yonghan Jung, Mohammad Adibuzzaman, Yao Chen, Yuehwern Yih   yonghan-jung-274  
* 0.71 Ludi Wang   ludi-wang-206  
53 0.69 Ahmad B. A. Hassanat, Ghada Awad Altarawneh   ahmad-hassanat-206  
54 0.64 Irena Jekova, Todor Stoyanov, Ivan Dotsinsky Arrhythmia Classification via Time and Frequency Domain Analyses of Ventricular and Atrial Contractions irena-jekova-204  
55 0.63 Lluís Borràs Ferrís, Ignacio José Pascual Fernández, Julio José Silva Rodríguez, Roberto Zazo Manzaneque   lluis-borras-ferris-205  
57 0.61 Ruhallah Amandi M, Mohammad Farhadi, A.J. Zarrin   ruhallah-amandi-205  
57 0.61 Ilya Potapov, Otto Pulkkinen, Esa Räsänen   ilya-potapov-245  
59 0.58 Matthieu Da Silva-Filarder, Faezeh Marzbanrad Combining Template-based and Feature-based Classification to Detect Atrial Fibrillation from a Short Single Lead ECG Recording matthieu-da-silva-filarder-204  
60 0.56 María Rebeca Lliguin León, Marta Mares García, Juliana Andrea Suárez Hernández   maria-rebeca-lliguin-leon-204  
61 0.55 Erin Coppola   erin-coppola-202  
62 0.53 Octavian-Lucian Hasna, Rodica Potolea Robust Feature Extraction from Noisy ECG for Atrial Fibrillation Detection octavian-lucian-hasna-202  
62 0.53 Carlos Fambuena Santos, Carlos Lopez Gomez, Pablo Abad Martinez, Gonzalo Collantes Pablo, Jose Millet Roig, Francisco Sales Castells Ramon   carlos-fambuena-santos-202  
64 0.51 Ines Chavarria Marques, Irene Cuenca Ortola, Laura Ferrero Montes, Eva Gil San Antonio   ines-chavarria-marques-204  
65 0.50 Mihalis Nicolaou, Hooman Oroojeni Mohamad Javad   mihalis-nicolaou-226  
67 0.25 Raviteja Mullapudi, Rajarao Mullapudi, Phanikiran Chintalapati   raviteja-mullapudi-203  

(*) These entries were disqualified because their authors submitted more than ten entries in total, contrary to the Challenge rules.

(x) These entries were disqualified because they included code that was not freely licensed, contrary to the Challenge rules. The code in question has been removed from the archives.


Supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) under NIH grant number R01EB030362.

© PhysioNet Challenges. Website content licensed under the Creative Commons Attribution 4.0 International Public License.

Back