The following paper describes the PhysioNet/Computing in Cardiology Challenge. Please cite this publication when referencing the Challenge.
The following papers were presented at the Computing in Cardiology Conference.
Morphological Determination of Pathological PCG Signals by Time and
Frequency Domain
Analysis
Márton Áron Goda, Péter Hajas
PCG Classification Using a Neural Network
Approach
Iga Grzegorczyk, Mateusz Soliński, Michał Łepek, Anna Perka, Jacek
Rosiński, Joanna Rymko, Katarzyna Stępień, Jan Gierałtowski
Automatic Heart Sound Recording Classification using a Nested Set of
Ensemble Algorithms
Masun Nabhan Homsi, Natasha Medina, Miguel Hernandez, Natacha Quintero,
Gilberto Perpiñan, Andrea Quintana, Philip Warrick
Abnormal Heart Sounds Detected from Short Duration Unsegmented
Phonocardiograms by Wavelet
Entropy
Philip Langley, Alan Murray
Normal / Abnormal Heart Sound Recordings Classification Using
Convolutional Neural
Network
Tanachat Nilanon, Jiayu Yao, Junheng Hao, Sanjay Purushotham, Yan Liu
Heart Sound Classification Based on Temporal Alignment
Techniques
José Javier González Ortiz, Cheng Perng Phoo, Jenna Wiens
Ensemble of Feature-based and Deep learning-based Classifiers for
Detection of Abnormal Heart
Sounds
Cristhian Potes, Saman Parvaneh, Asif Rahman, Bryan Conroy
Classifying Heart Sound Recordings using Deep Convolutional Neural
Networks and Mel-Frequency Cepstral
Coefficients
Jonathan Rubin, Rui Abreu, Anurag Ganguli, Saigopal Nelaturi, Ion Matei,
Kumar Sricharan
Using Spectral Acoustic Features to Identify Abnormal Heart
Sounds
Nicholas E. Singh-Miller, Natasha Singh-Miller
Heart Sound Classification Using Deep Structured
Features
Michael Tschannen, Thomas Kramer, Gian Marti, Matthias Heinzmann, Thomas
Wiatowski
A Novel Approach for Classification of Normal/Abnormal Phonocardiogram
Recordings using Temporal Signal Analysis and Machine
Learning
Sachin Vernekar, Saurabh Nair, Deepu Vijaysenan, Rohit Ranjan
Heart Sound Anomaly and Quality Detection using Ensemble of Neural
Networks without
Segmentation
Morteza Zabihi, Ali Bahrami Rad, Serkan Kiranyaz, Moncef Gabbouj,
Aggelos K. Katsaggelos
Supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) under NIH grant number R01EB030362.
© PhysioNet Challenges. Website content licensed under the Creative Commons Attribution 4.0 International Public License.