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Abstract

The automatic detection of heartbeats within physiolog-
ical signals collected from patients connected to bedside
monitors is an important task as it allows the detection of
pathological conditions. Heartbeat detection is tradition-
ally performed using the ECG. However, all bedside mon-
itors are prone to missing data, yet it is rare for any sys-
tem to incorporate data from other cardiac signals, such as
the arterial blood pressure (ABP) or photoplethysmogram
waveforms. This paper discusses the development of an
automatic heartbeat detector using multimodal data from
bedside monitors for the Physionet/Computing in Cardiol-
ogy Challenge 2014. The presented algorithm employs an
extended hidden Markov model to identify beat locations
from multimodal data. The model was extended to include
F1-score based signal quality indices in order to identify
noisy periods. Wavelet transform features from both the
ECG and ABP signals were added to derive the probabil-
ity of a beat being present at a given location. The over-
all score of the algorithm for the third phase of the Phy-
sionet Challenge 2014 was 83.47%. The algorithm was
also evaluated and compared to the top ranked entries [1]
on a sample of 5150 synchronous ECG and ABP records
from the MGH/MF database [2]. The overall score in this
case was 92.7%.

1. Introduction

Despite the existence of noisy and missing data in ICU
signals, there are few approaches to intelligence data fu-
sion or signal switching published in the literature. Li
et al. [3] proposed a Kalman filter (KF) based approach
for fusing heart rate (HR) derived from electrocardiogram
(ECG), arterial blood pressure (ABP) or photoplethysmo-
gram (PPG) waveforms, weighted by the KF innovation
and objective signal quality indices (SQIs).

While KF-type approaches have shown to reliably de-
tect trends, abrupt changes and artifacts from physiolog-
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ical signals with very little knowledge of the underlying
model, machine learning techniques require large amounts
of physiological data to train the model in detecting arti-
facts and important features efficiently [3]. Fortunately the
existence of open-access databases, such as MIMIC II [4],
provides a method of obtaining these data from clinical set-
tings, such as the intensive care unit, and developing ad-
vanced machine learning techniques for robust heartbeat
detection. This article proposes a novel hybrid probabilis-
tic approach, inspired by this earlier work, based upon the
use of SQIs and a hidden Markov model.

2. Methods

2.1. Datasets

The training set consisted of 100, 10-minute long
records of multiple, synchronous, physiological signals
recorded from adult patients. Each record consists of the
ECG signal, and a variety of other signals including the
ABP, all sampled at 250 Hz. The heartbeat locations in the
training set were manually annotated.

The test set consisted of an unseen set of similar sig-
nals, with a range of sampling frequencies (120-1000 Hz),
from the 3-stage Physionet Challenge 2014. As the train-
ing set was found to be unrepresentative of the test set, the
algorithm was also evaluated on 5150, 10-min long, syn-
chronous, ECG and ABP records taken from the MGH/MF
waveform database [2], all sampled at 360 Hz.

2.2. Feature Extraction and HR Estimation

The features extracted from both ECG and ABP sig-
nals are based on each signal’s slope-sum functions. In
order to suppress high frequency noise that might affect
the ECG and ABP beat detection, we applied a low-pass
filter to each signal. A second order recursive filter was
used, whose difference equation, for a sampling frequency
of 250 Hz, is given by yn = 2yn−1−yn−2+xn−2xn−5+
xn−10.
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Figure 1. Features and SQIs derived from ECG and ABP signals (see Sections 2.2 & 2.3). The raw ECG and ABP signals
are shown, as well as the locations of the heartbeat annotations.

where xn is the input signal of the low-pass filter, and yn
is the filtered signal. The 3 dB cut-off frequency is about
16 Hz and the gain is 25 at 0 Hz. The phase shift is 20 ms.
The slope-sum function was then determined to enhance
the most significant slopes of the ECG and ABP pulses,
highlighting the location of the peaks while suppressing
the remainder of the waveforms.

For the ECG signal, the windowed and weighted slope-
sum function at time i, zi, is defined as follows:

zECG
i =

i∑
k=i−w

∆y2k, ∆yk = yk − yk−1 (1)

where w is the length of the analyzing window (w =128
ms or 32 samples for the sampling frequency of 250 Hz),
and yk is the low pass filtered ECG signal as defined above.

For the ABP signal, the windowed and weighted slope-
function is defined by:

zABP
i =

i∑
k=i−w

∆u2k, ∆uk =

{
∆yk ∆yk > 0
0 ∆yk ≤ 0

(2)

where w =128 ms, and yk is the low pass filtered ABP
signal as defined above. In order to account for the time
difference between the ECG and ABP peaks (due to the
pulse transit time), the first 40 ms of zABP were removed,
and 10 samples (with the value of 0) were added to end of
the signal.

Each feature vector (zECG and zABP ) was then normal-
ized using a non-overlapping window of 10 secs, and each

window divided by that window’s corresponding maxi-
mum value, so that the feature vectors are within the scale
of 0, 1 (as shown in Fig. 1). The feature vectors were
down-sampled further to 50 Hz poly-phase anti-aliasing
filter, in order to increase the speed of computation.

2.3. Signal Quality Index Estimation

In order to evaluate the quality of the waveforms con-
sidered for heart beat detection, a SQI for each signal was
computed.

The SQI for the ECG signal was based on an algorithm
that evaluates the matching of the beats detected by two in-
dependent ECG peak detector algorithms [5] (implementa-
tion based on [6]1) and [7] (in which we consider a match-
ing interval of 150 ms of a given beat). The F1-score
was determined for each 10-second window (50% over-
lap). The segments of the signal in which the F1-score is
1 are used to determine the HR of the record: the inverse
of the time difference between consecutive beats is deter-
mined; the median value is selected; and the average HR
determined for all valid windows in the record (F1-score =
1) is determined as the overall HR for the record.

The SQI for the ABP signal was based on the identi-
fication of specific artifacts in the signal (SQIABP1 and
SQIABP2). For that, the baseline wander and high fre-
quencies were first removed by a second order Butterworth
filter with passband 0.5-10 Hz. Then, the segments of

1The submission code was a demo implementation in Matlab. More
robust C code is available
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Figure 2. Example of a segmented noisy ECG (from
Fig. 1), with the positions of theQRS annotations marked,
along with the HsMM-labelled states. State 1 identifies the
QRS complex, while the remainder of the heart cycle is
labelled as state 2.

the signal that were “clipped” were identified (SQIABP1);
i.e., the periods of saturation to a maximum or a mini-
mum value were determined within each 10-second win-
dow (50% overlap). A hysteresis threshold (of 1 normal-
ized unit) was defined to determine the smallest fluctuation
that should be ignored. Such samples are defined to be
“clipped”. If the percentage of the window that is clipped
was higher than 30%, the SQI value for that window would
be set to 0 (1, otherwise). The second SQI was based on the
inverse of the fourth moment (kurtosis) of the distribution
of the signal segment (SQIABP2). The final SQI value for
each window was determined as SQIABP1 × SQIABP2.

2.4. Hidden Semi-Markov Models

HMMs are a statistical framework used to describe se-
quential data. They operate by making inferences about
the likelihood of being in and transitioning between dis-
crete hidden states. In this case, the HMM is first order
while the observations are features derived from the ECG
and ABP. The two states in this case are: 1) S1: the QRS
complex 2) S2: the period from the S wave to the Q wave.
The demarcation of these two states is illustrated in Fig. 2.

An HMM can be defined as a function of A, B and π,
where A is the transmission matrix, governing the prob-
ability of transitioning between states, B is the emission
or observation distribution, defining the probability of see-
ing an observation in each state, and π is the initial state
probability distribution [8].

The utility of the HMM for heartbeat segmentation is
finding the most likely state sequence, given a HMM, λ =
(A,B, π), and an observation sequence, O. This is derived
using a dynamic programming method called the Viterbi
algorithm [8].

A HMM of this type does not incorporate information

about the expected duration of each state. The state dura-
tions are governed only by the self-transition probabilities,
resulting in an exponentially decaying probability of re-
maining in a state for longer than one time step. This is
poorly suited for physiological signal analysis [8]. In or-
der to improve the duration modelling, an extra parameter
is introduced:

Let us define the new model as λ = (A,B, π, p), where
p = {pi(d)} is the explicitly defined probability of remain-
ing in state i for duration d. This is then called a hidden
semi-Markov model (HSMM) [9].

Therefore, a key component of the HSMM for heart-
beat detection is an estimate of the amount of time ex-
pected to remain in each state. These durations were
modelled as Gaussian distributions, following Schmidt et
al. [10]. The parameters of the duration distribution for
state one, DS1

, were derived from [11] such that DS1
∼

N
(

0.09, (0.034)
2
)
.

The duration distribution for state two, the period from
the S wave to the Q wave, can be modelled with knowl-
edge of the mean and variance of the duration of each
heart cycle, derived with knowledge of the HR: DS2

=
Dcycle−DS1 , where Dcycle is the HR-derived duration of
a cardiac cycle.

2.5. Model Training & Evaluation

The HMM parameters defined in Section 2.4 were de-
rived from the training set. The QRS complexes within
the training set signals were demarcated using the provided
annotations and the mean QRS duration.

In the case of B, the emission or observation distribu-
tion, a Gaussian distribution, trained on the single feature
from the ECG and ABP, was used for each of the ECG and
ABP signals. The multiplication of the outputs from these
two distributions allowed the fusion of the ECG and ABP
signals in a probabilistic fashion.

Further, the signal quality of each signal was incorpo-
rated into the model by multiplying the output of the above
Gaussian distributions with the signal quality scores, de-
rived in Section 2.3. These scores, with a range of zero
to one, can be interpreted as a probability of being good
quality. This allows a greater weighting within the HMM
to be applied to the signal with greater signal quality.

Evaluation of the method was performed on a hidden
test set of recordings (see Section 2.1). Each detected
heartbeat, labelled as the mid-point of each state 1 pe-
riod, was correctly identified if it fell within 150 ms of
the reference annotation. Entries were scored using bxb
and sumstats functions (components of the WFDB soft-
ware package [1]), which processes the reference and test
annotations (i.e., those generated by the participants entry)
to obtain a sensitivity (SE) and positive predictive value

555



(PPV ) for each test record, and calculate the average and
gross SEs and PPV s using all records in the test set. The
overall score results from averaging the average and gross
SEs and PPV s.

3. Results

Table 1 shows the overall score of the three best en-
tries, the sample QRS detector and the proposed algo-
rithm, on both the challenge and the MGH/MH datasets.
As the HSMM approach had an overall score of 99.84%
in the provided training set, and a significantly lower score
for the various phases hidden test sets, some of the fea-
tures and filters were improved with the MGH/MH dataset,
which provided more examples of signal artifacts.

Table 1. Overall score for 3 of the 4 top entries [1], the
sample entry and the proposed HSMM entry, for the phase-
III and the MGH/MF databases.

Entry Overall Score (%)
Phase-III MGH/MF

Joachim Behar 87.93 95.8
Teo Soo Kng 86.73 92.9
Thomas De Cooman 86.61 94.4
Sample entry 84.49 95.7
Proposed HSMM 83.47 92.7

4. Discussion

This paper introduced an extended HMM-based ap-
proach for the detection of heart beats in multimodal data,
incorporating signal quality features.

As can be seen in Table 1, the proposed HSMM method
did not outperform the sample Physionet Challenge en-
try. This is also the case for the entries ranked third and
fourth, when evaluated in the MGH/MH dataset; only the
first ranked entry remained consisted between datasets. It
is thought that the main limitation of the HSMM approach
is the constraint of the HSMM on near-periodic sequences,
based on the Gaussian distributed duration distributions.
While this works effectively for detecting beats in ECGs
with near-regular beat intervals, beats in highly irregular
signals, like those from an arrhythmic patient, would not
be accurately detected. Indeed if the MGH/MH dataset
contains more regular signals than the challenge dataset,
this could explain the better performance of the sample en-
try (based only on the ECG signal), and the HSMM score
only differing by 0.02% from the third ranking entry score.
In addition, as QRS detection is vital for the SQI esti-
mation, the use of more robust QRS detectors (which are
available) are likely to lead to further (potentially signifi-
cant) improvements. The HSMM approach could also be
improved for highly irregular ECG signals by relaxing the
duration constraints or trained on a set of recordings more
representative of the test dataset.
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