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Abstract

Introduction: Intensive care unit patients are heavily
monitored, and a number of clinically relevant parame-
ters are routinely extracted from high resolution signals.
In particular, heart rate is derived from intervals between
pulses in pseudo-periodic signals such as the electrocar-
diogram (ECG) or arterial blood pressure (ABP) wave-
forms. However, poor signal quality and high noise levels
can unfortunately lead to false localisation of these pulses
(or peaks), resulting in incorrect estimates of heart rate.
The goal of the 2014 Physionet/CinC Challenge was to
encourage the creation of an intelligent system that fused
information from different biosignals to create a robust set
of peak detections.

Methods: First, a set of peak detectors were evaluated
on different cardiovascular signals. The detections were
then fused using two different approaches: the first one
was based on a calculated measures of signal quality for
the ECG and ABP signals and the the second fusion tech-
nique was based on the regularity of the derived inter-
vals between subsequent detections made on ECG, ABP,
Stroke Volume and Photoplethysmogram signals. These
techniques were developed using the MGH/MF database
and submitted for scoring on the Challenge test-set.

Conclusion: The best entries for the two approaches ob-
tained an overall score of 87.88% and 87.66%, respec-
tively, in phase III of the challenge, which provided the
highest official score.

1. Introduction

Millions of patients are admitted to Intensive Care Units
(ICUs) in the United States every year. These patients
require a high level of acute care, with numerous bed-
side monitors which are continuously monitoring both in-
vasive and non-invasive variables. These monitors pro-
vide synchronous waveforms with both independent and
complementary information. Huge ICU databases are
therefore becoming available, and include parameters such
as the electrocardiogram (ECG), the photoplethysmogram
(PPG), the arterial blood pressure (ABP) waveform and

various surrogates of respiratory effort. In clinical prac-
tice these signals are processed individually and derived
parameters are frequently set to trigger an alarm when the
parameter of interest exceeds a pre-defined range. These
alarms are frequently false alarms (FAs) and account for a
large majority of all alarms generated in the ICU [1].

It has been demonstrated that switching between sig-
nals independently derived from the patient can reduce the
rate of FAs, e.g. by checking the heart rate from the ABP
waveform when an ECG derived heart rate alarm was trig-
gered [2, 3].

Nevertheless, little has been done fusing pulse esti-
mates from physiological signals other than the ECG, even
though this has the potential of improving detections when
the ECG is compromised. The Physionet/CinC 2014 chal-
lenge (the ‘Challenge’) provided a multimodal training set
of 100 recordings with references for this task, with a hid-
den set of 300 recordings for testing purpose [4].

2. Material and Methods

2.1. New Training Set

The challenge training set contained 100 10-minute seg-
ments of up to 8 physiological signals, all containing one
ECG and one ABP channel. Additional signals which
were inconsistently present included the electrooculogram
(EOG), electroencephalogram (EEG), stroke volume (SV),
other blood pressure based signals and respiration signals.
Evaluation of the sample entry (“gqrs”), available on Phy-
sionet [5], achieved a score of 99.60% on the training set,
leaving no real space for improvement. Moreover, the sam-
ple entry scored 89.83% for phase I, 85.70% for phase II,
and 84.49% for the final phase. The training set was not
representative of the complexity of the test set and conse-
quently could not be used for deriving an intelligent multi-
modal peak fusion algorithm.

In order to alleviate the issues with the training set, a
custom database was built. As the challenge training set
had both ECG and ABP signals available in all records, it
was desirable to create a new training set with one ECG
lead and one ABP channel. The MGH/MF Waveform
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database [6] is a collection of 250 recordings from hemo-
dynamic (ABP, CVP, PAP) and electrocardiographic (three
leads) signals acquired from patients in critical care units,
operating rooms, and catheterization labs. These record-
ings were usually one hour in length, but could vary be-
tween 12 to 86 minutes. All recordings had manually cor-
rected R-peak annotations. The MGH/MF database was
reformatted into 5274 10-minute recordings, containing
one ECG and one ABP channel.

2.2. Individual Peak Detector

R-peak detection on ECG signals has been extensively
studied. In this work three different peak detectors were
evaluated: (1) “gqrs” (available on Physionet [5]), which
consists of a QRS matched filter with a custom built set of
heuristics (such as search back). (2) “coqrs” [7–9] based
on the peak energy (no search back). (3) “jqrs” [10, 11]
consists of a window-based peak energy detector but with
replacement of the original band-pass filter with a QRS
matched filter (Mexican hat) and an additional heuristic
ensuring no detections were made during flat lines.

The onset of the pulses in the ABP signal was detected
using an open-source algorithm, “wabp”, based on the
length transform [12]. These detections occur with a de-
lay relative to the R-peak as the peak of the pressure wave
occurs after the heart contraction. The delay was esti-
mated on a patient-specific basis by isolating a one minute
segment with more than 80% agreement between the R-
peak detections and wabp detections. Agreement was high
when a R-peak detection was consistently followed by a
wabp one. The mean delay between these ABP peaks and
their matched R-peaks was set as the ABP delay for the
entire record. If there was no one-minute segment which
fulfilled this criteria, a delay of 200 ms was set.

Other physiological signals were potentially available
and could provide useful information. SV was processed
and peaks were extracted using a zero-crossing procedure
after a band-pass filter. Peaks were also detetected from
PPG signals using a peak energy technique [11]. As for
ABP peaks, SV and PPG peaks were mapped back in or-
der to account for their intrinsic delays.

2.3. Fusion of multiple signals

The most important aspect of the Challenge was the de-
velopment of an intelligent fusion technique for multiple
peak detectors from different physiological signals. Two
approaches were implemented: the first based on signal
quality indices (SQI) for the different physiological signals
and the second based on the regularity of the RR interval
time-series. The two approaches are referred as fusion-SQI
(FSQI) and fusion-regularity (FREG) in what follows.

For FSQI, the agreement level of two R-peak detec-
tors in a 10-second window, evaluated every second, was
used as the SQI (known as “bSQI”). Intuitively, the pres-
ence of noise and artifacts will lower the agreement level
between two semi-independent detectors. bSQI was re-
cently successfully used on a database with pathological
rhythms [3,13]. The ABP signal quality was also evaluated
using an open-source algorithm [14] which flags a signal
as bad quality if derived parameters from a blood pressure
wave are not in reasonable physiological ranges. Only the
pressure ranges and the average derivative for a cycle (a
subset of the original SQI parameters) were checked for
validity, and this SQI is henceforth known as aSQI. The
switching proceeded on a second-by-second basis: if bSQI
value was > 0.9, the ECG was used. If bSQI value was
≤ 0.9, and if aSQI = 1 (all derived parameters were phys-
iologically plausible), the ABP was used. Finally, if both
signals were considered bad quality, the ECG was used.

The FREG approach was based on selecting the most
regular of a set of RR interval time-series for consecu-
tive windows. The implicit assumption made is that the
presence of noise and artifacts will induce missed or extra
detections, whose subsequent rhythm is less likely to be
regular than the true RR interval time-series (even in pres-
ence of arrhythmias). This approach was used previously
in foetal ECG extraction for the selection of the best ab-
dominal lead [11]. The surrogate for regularity was chosen
as the standard deviation of the RR interval time-series. If
a time-series contained less than three detections within a
given window, it was considered to be bad quality. The op-
timal window size was searched for and set at 15 seconds.

2.4. Algorithm evaluation

The challenge score was defined as the average of four
quantities: the average sensitivity (Se), average positive
predictivity (PPV), gross Se, and gross PPV. The F1 mea-
sure was also evaluated: it is defined as F1 = 2(Se ×
PPV )/(Se + PPV ), thus equally penalising false posi-
tives and false negative detections which is likely to be a
better accuracy measure than the average between Se and
PPV [11].

All individual ECG and ABP detectors were evalu-
ated on the bespoke dataset. Five of the best entries in
phase III, excluding the method here-in, were also evalu-
ated [15–19]. Finally, two entries corresponding to FSQI
and one to FREG were also assessed. The FSQI approach
requires two ECG peak detectors, both are used to com-
pute the SQI.The first entry used “gqrs” as the baseline set
of annotations, denoted FSQI (gqrs), and the second one
used “jqrs” as the baseline, denoted FSQI (jqrs). The third
entry used the FREG approach, with three peak detectors
applied to the ECG signal and “wabp” applied to the ABP
signal, and finally peaks detected on SV and PPG when
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available. These three entries were also evaluated on the
Challenge final test set in phase III.

3. Results

The results for the different techniques using the cus-
tom training set are assembled in Table 1. The highest
PPV was achieved using jqrs, which only used the ECG
signal and did not contain any multimodal switching. The
“Challenge” scored entries on the final test set using the
depicted techniques are assembled in Table 2. The best re-
sult was achieved using FSQI (gqrs). This technique per-
formed slightly better (+0.22%) than FREG, and provided
the highest official score in the final phase of the competi-
tion.

4. Discussion & Conclusion

In this paper, two methods for fusing peak detected from
multiple physiological signals were described. Both ap-
proaches obtained similar results on the Challenge test
set, with the SQI-based technique being slightly better
(+0.22%) whereas it was slightly worse on the custom
training set (−0.64%).

Overall, the use of hemodynamic signals for the estima-
tion of peak positions was shown to be beneficial on noisy
signals. Nevertheless, such an approach must be taken
with care. The presence of an arrhythmia can sometimes
only manifest on ECG signals and not on hemodynamic
signals. One such example is an early premature ventric-
ular contraction preceding the filling of the ventricles. In
this case, the ECG and ABP will inevitably disagree, and a
regularity based approach would incorrectly switch to the
more regular ABP.

There are some limitations to the use of MGHDB as a
custom training set. First, as it only contains ECG and
ABP signals, performance on this database are biased to
methods which switch between these two signals. As all
Challenge training set records had ECG and ABP signals,
this bias was desirable, but this should still be acknowl-
edged. Secondly, the MGHDB may not accurately reflect
the Challenge test set, as arrhythmias or dramatic rhythm
changes may be underrepresented in the MGHDB.
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Figure 1. Example of SQI switching when ECG is low quality. The top row contains the ABP signal, while the ECG signal is depicted in red in the
third row from the bottom, with the reference annotations marked with black crosses. Vertical grey lines represent the windows for acceptable detected
peaks. The two bottom graphs represent both bSQI (plain line with circle markers) and aSQI (dotted lines). The annotations of the different individual
detectors are depicted in the middle rows, and the region using ABP annotations instead of ECG annotations is shaded red.

Average Gross
Algorithm Se(%) PPV(%) Se(%) PPV(%) F1(%) Score(%)

Single detectors gqrs 91.75 96.19 91.87 96.63 94.19 94.11
jqrs 92.66 96.51 93.00 96.72 94.82 94.72
coqrs 91.19 93.46 91.77 93.41 92.58 92.46
wabpmapped 77.03 80.38 79.79 81.59 80.68 79.70

This work FSQI (gqrs) 93.94 95.90 94.29 96.39 95.38 95.16
FSQI (jqrs) 93.73 96.18 94.03 96.28 95.15 95.06
FREG† 95.83 95.56 96.23 95.56 95.89 95.79

Competitors sachi [15] 90.43 90.35 95.39 94.30 94.84 92.61
teosk [16] 89.82 95.66 89.91 96.41 93.05 92.95
podz [17] 92.94 95.75 92.69 95.64 94.14 94.25
marcus [18] 95.34 95.33 94.46 96.22 93.84 94.96
thomas [19] 92.06 96.31 92.16 96.98 94.51 94.37

Table 1. Results of the different techniques on the MGH training database.
† It should be highlighted that on this training set no SV or PPG signals are available.

Average Gross
Algorithm Se(%) PPV(%) Se(%) PPV(%) F1(%) Score
FSQI (gqrs) 89.78 86.74 89.73 85.29 87.45 87.88
FSQI (jqrs) 88.66 86.18 88.68 85.09 86.82 87.15
FREG 91.19 85.08 91.18 83.22 87.02 87.66

Table 2. Results of the different techniques on the Challenge test set.
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