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Abstract 

QRS detection based on ECG signal is the most 
straightforward method for heart beat detection. 
However, existing QRS detection methods do not work 
well when ECG signal is contaminated or missing. Other 
physiological signals also contain information about 
cardiac activity and ECG. Their information can be 
explored for robust heart beat detection. 

As part of the PhysioNet/Computing in Cardiology 
Challenge 2014, this study proposed a multimodal 
information fusion framework for robust heart beat 
detection. The framework consisted of three steps: 1) QRS 
detection. 2) Remove spurious QRS detection using 
pulsatile signal if it is available. 3) Refine the remaining 
beat detection and interpolate missed beats. Results show 
that the algorithm can sufficiently reduce spurious QRS 
detection and accurately fill in missed beats. 

1. Introduction

Electrocardiography (ECG) has been widely used in 
healthcare systems to record the heart’s electrical activity 
for its simplicity and non-invasiveness. In ECG analysis, 
especially computerized ECG analysis, heart beat 
detection is always the first step. Therefore, the accuracy 
of heart beat detection is of great importance since it 
determines the performance of ECG analysis. 

QRS detection, i.e., detecting R wave based on ECG 
signal, is an intuitive and straightforward solution for 
heart beat detection. Many methods have been developed 
for QRS detection [1-5], and they all achieve more than 
99% accuracy on the MIT/BIT arrhythmia database [6]. 
However, they operate on ECG signal only and their 
performance heavily relies on the quality on the ECG 
signal. In the case of large noise, disturbance, and 
artifacts, or even when ECG signal is missing, these 
methods cannot accurately detect the heart beat. 

In addition to ECG, other pulsatile signals such as 

blood pressure (BP) and photoplethysmogram (PPG) also 
indicate cardiac activity, and thus can fill in the gap when 
ECG is contaminated or missing. For example, the 
relationship between ECG-pulse wave delay time and 
arterial blood pressure (ABP) was studied in [7]. This 
relationship can be used for QRS detection when the 
onset of ABP pulses can be accurately detected [8]. Non-
pulsatile signals such as electroencephalography (EEG) 
and electromyography (EMG) are not directly related to 
cardiac activity, but they are usually contaminated by 
ECG components. Even though there is no currently 
available approach to derive ECG from EEG or EMG 
signal, their relationship can be explored as well for heart 
beat detection. 

The PhysioNet/Computing in Cardiology Challenge 
2014 aims to encourage exploration of robust methods for 
heart beat detection using ECG as well as other 
physiological signals. In this paper, we propose a 
multimodal framework that efficiently fuses information 
from different signals for robust hear beat detection. 

2. Methods

2.1. Dataset 

The dataset of ECG and a wide range of other pulsatile 
and non-pulsatile signals recorded simultaneously was 
provided by PhysioNet/Computing in Cardiology 
Challenge 2014. A training dataset was available for the 
study, while a testing dataset was hidden for evaluating 
the Challenge entries. 

The training dataset consisted of 100 records of human 
adults, including patients with various problems as well 
as healthy subjects. All the records had ECG signal and 
three to seven simultaneously recorded physiological 
signals. Each record was 10-minute long or occasionally 
shorter, sampled at a uniform 250 samples/second. For 
the training dataset, a set of reference heart beat 
annotations was available. These reference heart beats 
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represented the locations of the QRS complexes in the 
ECG signal. They were annotated by several experts and 
therefore were considered as the ground truth. A 10-
second excerpt of a record from the training dataset is 
shown in Figure 1 (viewed in LightWAVE [9], available 
at http://physionet.org/lightwave/), where the blue marks 
are the reference heart beat annotations. 

The hidden testing dataset consisting of 300 records 
was similar to the training dataset, except that the 

sampling frequency ranged from 120 to 1000 
samples/second. 

The goal of the challenge was to develop an algorithm 
that takes a record as the input, and outputs the detected 
heart beat annotations. The output annotations were 
compared with the reference annotations for performance 
evaluation. 

 

 
 

Figure 1: A 10-second excerpt of a record from the training dataset. 
 
 

2.2. Performance Evaluation 

For each record in the testing dataset, sensitivity (Se) 
and positive predictivity (+P) are defined by 

Se = TP/(TP+FN) 
+P = TP/(TP+FP) 

where TP is the number of true positives or correctly 
detected beats, FN is the number of false negatives or 
missed beats, and FP is the number of false positives or 
detections of non-beats. Se measures the proportion of 
actual positives which are correctly identified, and +P 
measures the percentage of detections that are true 
positives. To be considered as a true positive, a test 
annotation must be located within 150 ms of a reference 
annotation, and must also be the nearest annotation to this 
reference annotation. 

Gross Se and gross +P are derived from the sum of all 
TP, FN, and FP over the testing dataset. Average Se and 
average +P are the averages of individual Se and 
individual +P, respectively. The average of gross Se, 
gross +P, average Se, and average +P, is the overall score 
for ranking. 

2.3. Multimodal Information Fusion 

Since the goal of the Challenge was to explore robust 
methods, the characteristics of the available training 
dataset were very different from those of the hidden 
testing dataset. This meant that any method specifically 
designed for the training dataset was not expected to 
perform well on the testing dataset. The model had to be 
general enough so that it could incorporate difficult 
situations not observed in the training dataset.  

A multimodal information fusion framework for robust 
heart beat detection consisting of the following three 
steps was proposed. 

1) QRS detection. 
2) Remove spurious detections or false positives 

using information from pulsatile signal if it is 
available. 

3) Refine the remaining beat detection and 
interpolate missing beats. 

Such a flowchart is shown in Figure 2. 
For step 1), QRS detection was based on ECG signal. 

An open-source algorithm GQRS from PhysioNet 
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(available at http://physionet.org/physiotools/wag/gqrs-
1.htm) was used for this purpose. Examples of GQRS 
results, when operated on the Challenge dataset, were 
plotted in Figure 3. It was observed that, when the ECG 
signal was clean, the GQRS algorithm was almost perfect 
since the results matched the reference annotations, as 
shown in Figure 3(a). But when the ECG signal was 
severely contaminated, the performance of GQRS 
decreased dramatically. False positives (spurious 
detection) and false negatives (missed beats) were seen in 
Figure 3(b). Therefore, step 2) followed to reduce false 
positives using information from pulsatile signal. 

 
Figure 2: Flowchart of the multimodal information fusion 
framework for robust heart beat detection. 
 

Since BP was the most common pulsatile signal in this 
Challenge, it was used in step 2). Note that the framework 
is not limited for BP but for any pulsatile signal. The idea 
was intrigued by the work in [10]. It used R wave 
position in ECG signal to verify intracranial pressure 
(ICP) peak detection. Similarly, the delay between the 
QRS complex and the BP peak could be exploited (see 
Figure 1). For this Challenge, we used peaks in BP signal 
to verify QRS detection. First of all, the BP signal was 
band-pass filtered by a finite impulse response (FIR) 
filter. The cut-off frequencies corresponded to the 30th 
and 70th percentiles of the RR intervals obtained from the 
QRS detection. This heart-rate dependent filtering was to 
reduce the inherent noise and baseline variations in BP 
signal, while keeping the same frequency components as 
the heart rate. Next, we needed to determine if the BP was 
of a good quality for us to verify QRS detection. For each 
QRS detection in step 1), a short window of BP signal at 
the R wave location was selected. The Fisher's g–statistic 
was performed on the short window to test for periodicity 
of the BP signal [11]. This test indicated the quality of the 
BP signal. If the BP signal was periodic, we then 
searched for a local maximum over a narrow delayed 

window corresponding to QRS detection. The range of 
the narrow window was [pre_Delay-∆/2, pre_Delay+∆/2], 
where pre_Delay was the delay between the previous 
QRS complex and its corresponding BP peak, and ∆ was 
the window length. If a local maximum was found in the 
BP window, it indicated that the QRS detection was a true 
positive. On the other hand, if a local maximum did not 
exist in the BP window, it implied that the QRS detection 
was spurious. Finally, all the spurious QRS detections 
were removed. 

 
(a) ECG is clean. 

 
(b) ECG is contaminated. 

Figure 3: Examples of the results of GQRS. 
 

Note that even though step 2) could remove most of 
the spurious QRS detections, it may not be able to detect 
all of them. Also, it may occasionally remove some true 
positives. Therefore, step 3) would refine the remaining 
QRS detections in step 2), and fill in the missed beats. 

In step 3), RR intervals from the remaining QRS 
detections were calculated. These RR intervals included 
both true and false RR intervals. For the RR intervals 

within a predefined normal range, their mean avgRR  and 

standard deviation   were obtained. As a result, 

avg avg[RR 3 ,RR 3 ]    was considered as the 

refined subject-dependent normal range of RR intervals, 
because the predefined normal range was wide enough to 
cover subjects of different conditions. For RR intervals 

too small ( avgRR<RR 3 ), the corresponding QRS 

detections were removed. Finally, for the remaining RR 

intervals that were too large ( avgRR>RR 3 ), 
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additional R waves were interpolated according to the 
nearest normal RR intervals. 

Note that our approach required some predefined 
parameters such as the predefined normal range of RR 
intervals and the narrow window length ∆ to search for a 
local maximum in BP signal. Since the characteristics of 
the testing dataset were different from those of the 
training dataset, these parameters were empirically 
estimated from the training dataset and manually adjusted 
to incorporate possible testing cases not observed in the 
training dataset. 

 
3. Results 

The performance statistics of our approach on the 
training and testing datasets are summarized in Table 1. 
The difference in performance implies that the signals are 
much cleaner in the training dataset. Since the training 
dataset is too easy, it is difficult to evaluate the 
performance in each step of our method. Instead, we 
created a more difficult dataset by adding white Gaussian 
noise (WGN) to the ECG signals randomly. The 
performance statistics in each step of our method are 
summarized in Table 2. We can see that step 2) 
dramatically increases +P by removing the spurious QRS 
detection, and slightly reduces Se since it occasionally 
removes some true positives. Similarly, step 3) increases 
Se by interpolating the missed beats, and slightly reduces 
+P since it occasionally fills in false positives. 
 
 
Table 1. Performance statistics of our approach on the 
training and testing datasets. 
 

  Se (%) +P (%) 
 
Training 

Gross 
Average 
Overall 
Gross 

99.97 
99.96 
99.64 
83.31 

99.32 
99.29 
 
79.84 

Testing Average 83.84 77.77 
 Overall 81.19 

 
Table 2. Performance statistics in each step of our 
approach on a simulated dataset corrupted by WGN. 
 

  Se (%) +P (%) 
 
Step 1) 

Gross 
Average 
Overall 
Gross 

86.32 
86.41 
75.71 
80.19 

65.24 
64.85 
 
87.78 

Step 2) 
 
 
Step 3) 

Average 
Overall 
Gross 
Average 
Overall 

80.54 
83.99 
88.90 
89.12 
87.53 

87.43 
 
86.11 
85.99 

4. Conclusions 

Even the state-of-the-art QRS detectors cannot 
accurately estimate the QRS locations when ECG signal 
is contaminated or missing. Other physiological signals 
contain cardiac information and can be used for robust 
heart beat detection. We have developed a multimodal 
information fusion framework using any pulsatile signal 
for robust heart beat detection. Overall accuracies of 
99.64% and 81.19% were achieved on the training and 
testing datasets, respectively. Each step in our method 
was verified on an artificial dataset corrupted by WGN. 
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